Citation: | WEI Bang-zheng, CHEN Wen-chao, ZHU Xi, CHEN Peng-qi, CHENG Ji-gui. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites[J]. Powder Metallurgy Technology, 2018, 36(5): 363-369, 376. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.008 |
[1] |
张敬国, 汪礼敏, 张少明, 等. 铜及铜合金粉末应用及研究现状. 粉末冶金工业, 2013, 23(1): 52 DOI: 10.3969/j.issn.1006-6543.2013.01.011
Zhang J G, Wang L M, Zhang S M, et al. The copper and copper alloy powders application and research status. Powder Metall Ind, 2013, 23(1): 52 DOI: 10.3969/j.issn.1006-6543.2013.01.011
|
[2] |
朱承程, 马爱斌, 江静华, 等. 高强高导铜合金的研究现状与发展趋势. 热加工工艺, 2013, 42(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201302005.htm
Zhu C C, Ma A B, Jiang J H, et al. Research status and development tendency of high-strength and high-conductivity copper alloy. Hot Working Technol, 2013, 42(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201302005.htm
|
[3] |
Ullbrand J M, Córdoba J M, Tamayo-Ariztondo J, et al. Thermomechanical properties of copper-carbon nanofibre composites prepared by spark plasma sintering and hot pressing. Compos Sci Technol, 2010, 70(16): 2263 DOI: 10.1016/j.compscitech.2010.08.016
|
[4] |
Tamayo-Ariztondo J, Córdoba J M, Odén M, et al. Effect of heat treatment of carbon nanofibres on electroless copper deposition. Compos Sci Technol, 2010, 70(16): 2269 DOI: 10.1016/j.compscitech.2010.07.015
|
[5] |
王晔, 燕青芝, 张肖路, 等. 石墨对铜基粉末冶金闸片材料性能的影响. 粉末冶金技术, 2012, 30(6): 432 DOI: 10.3969/j.issn.1001-3784.2012.06.006
Wang Y, Yan Q Z, Zhang X L, et al. Effect of graphite on properties of copper-based brake pads material made by powder metallurgy. Powder Metall Technol, 2012, 30(6): 432 DOI: 10.3969/j.issn.1001-3784.2012.06.006
|
[6] |
Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530 DOI: 10.1126/science.1158877
|
[7] |
Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 DOI: 10.1126/science.1157996
|
[8] |
Rafiee M A. Graphene-based Composite Materials[Dissertation]. Troy: Rensselaer Polytechnic Institute, 2011
|
[9] |
Renteria J, Legedza S, Salgado R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater Des, 2015, 88: 214 DOI: 10.1016/j.matdes.2015.08.135
|
[10] |
Qi X Y, Pu K Y, Li H, et al. Amphiphilic graphene composites. Angew Chem, 2010, 122: 9616 DOI: 10.1002/ange.201004497
|
[11] |
Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev, 2012, 41(2): 666 DOI: 10.1039/C1CS15078B
|
[12] |
Gao X, Yue H Y, Guo E J, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technol, 2016, 301: 601 DOI: 10.1016/j.powtec.2016.06.045
|
[13] |
Sadowski P, Kowalczyk-Gajewska K, Stupkiewicz S. Classical estimates of the effective thermoelastic properties of copper-graphene composites. Compos Part B, 2015, 80: 278 DOI: 10.1016/j.compositesb.2015.06.007
|
[14] |
Chu K, Wang F, Wang X H, et al. Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater Sci Eng A, 2018, 713: 269 DOI: 10.1016/j.msea.2017.12.080
|
[15] |
Wang L D, Yang Z Y, Cui Y, et al. Graphene-copper composite with micro-layered grains and ultrahigh strength. Sci Rep, 2017, 7: 41896 DOI: 10.1038/srep41896
|
[16] |
Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater, 2013, 25(46): 6724 DOI: 10.1002/adma.201302495
|
[17] |
Kim W J, Lee T J, Han S H. Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling. microstructure and mechanical properties, Carbon, 2014, 69(4): 55 http://www.sciencedirect.com/science/article/pii/s0008622313011238
|
[18] |
凌自成, 闫翠霞, 史庆南, 等. 石墨烯增强金属基复合材料的制备方法研究进展. 材料导报, 2015, 29(4): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201507027.htm
Ling Z C, Yan C X, Shi Q N, et al. Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets. Mater Rev, 2015, 29(4): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201507027.htm
|
[19] |
Tang Y X, Yang X M, Wang R R, et al. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids. Mater Sci Eng A, 2014, 599(2): 247 http://www.sciencedirect.com/science/article/pii/S0921509314000926
|
[20] |
Hsieh C C, Liu W R. Synthesis and characterization of nitrogen-doped graphene nanosheets/copper composite film for thermal dissipation. Carbon, 2017, 118: 1 DOI: 10.1016/j.carbon.2017.03.025
|
[21] |
Cho S C, Kikuchi K, Kawasaki A, et al. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite. Nanotechnology, 2012, 23(31): 315705 DOI: 10.1088/0957-4484/23/31/315705
|
[22] |
Koppad P G, Ram H R A, Kashyap K T. On shear-lag and thermal mismatch model in multiwalled carbon nanotube/copper matrix nanocomposites. J Alloys Compd, 2013, 549(2): 82 http://www.sciencedirect.com/science/article/pii/S0925838812016477
|
1. |
欧阳维,翟博,陈文琳,宋奎晶,陈畅,钟志宏. TiC颗粒增强FeCrCoMnNi基复合材料的微观组织与力学性能. 粉末冶金技术. 2024(04): 338-345 .
![]() | |
2. |
汪家瑜,方华婵,张芊芊,段志英,方舟,张茁,陈卓,许永祥,任子安. 碳纤维粉末改性铁基粉末冶金材料的组织与性能. 粉末冶金材料科学与工程. 2023(04): 390-403 .
![]() | |
3. |
刘增林,韩伟,王彦康,王涛,吕伟龙. 陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能. 粉末冶金技术. 2022(06): 527-534 .
![]() | |
4. |
熊陶亮. 钢铁冶金流程节能技术及要点分析. 中国金属通报. 2020(04): 111-112 .
![]() | |
5. |
耿文霞,王秋林,万斌,徐如涛,李昂,赵龙志. TiC_p/Fe复合材料的界面反应. 粉末冶金工业. 2020(04): 51-56 .
![]() |