AdvancedSearch
WEI Bang-zheng, CHEN Wen-chao, ZHU Xi, CHEN Peng-qi, CHENG Ji-gui. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites[J]. Powder Metallurgy Technology, 2018, 36(5): 363-369, 376. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
Citation: WEI Bang-zheng, CHEN Wen-chao, ZHU Xi, CHEN Peng-qi, CHENG Ji-gui. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites[J]. Powder Metallurgy Technology, 2018, 36(5): 363-369, 376. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.008

Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites

More Information
  • Corresponding author:

    CHENG Ji-gui, E-mail: jgcheng63@sina.com

  • Received Date: March 17, 2018
  • The copper-coated reduced graphene oxide (RGO) composite powders were obtained by electroless plating method in this paper, using RGO and CuSO4·5H2O as the main raw materials. The mixed RGO/Cu powders were obtained by added RGO in different mass fractions (0.2%, 0.4%, 0.6%, 0.8%). RGO/Cu composite materials were prepared by pressing and sintering. Compared with the RGO/Cu composite materials without copper-coated on RGO, the microstructures and performances of RGO/Cu composite materials were tested and analyzed by X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscope. The results show that, the copper-coated RGO powders disperse uniformly in the RGO/Cu composites, while the copper-uncoated RGO agglomerates seriously in the Cu matrix. The mechanical properties of composites improve with the addition of RGO, while the electrical and thermal conductivity of the RGO/Cu composites decrease with the increase of RGO content. Properties of the RGO/Cu composites prepared by copper-coated RGO are better than those of RGO/Cu composites prepared by the Cu-unplated RGO. The maximum comprehensive performances of RGO/Cu composites prepared by copper-coated RGO in RGO mass fraction of 0.4% are obtained, and the compressive yield strength and tensile strength reach 156.73 and 268.62 MPa, respectively, which increase by 109% and 14.48%, compared with the pure copper yield strength (75 MPa) and tensile strength (234.64 MPa) obtained in the same conditions, the electrical conductivity reaches 95.01% IACS and the thermal conductivity is 415.5 W·(m·K)-1.
  • [1]
    张敬国, 汪礼敏, 张少明, 等. 铜及铜合金粉末应用及研究现状. 粉末冶金工业, 2013, 23(1): 52 DOI: 10.3969/j.issn.1006-6543.2013.01.011

    Zhang J G, Wang L M, Zhang S M, et al. The copper and copper alloy powders application and research status. Powder Metall Ind, 2013, 23(1): 52 DOI: 10.3969/j.issn.1006-6543.2013.01.011
    [2]
    朱承程, 马爱斌, 江静华, 等. 高强高导铜合金的研究现状与发展趋势. 热加工工艺, 2013, 42(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201302005.htm

    Zhu C C, Ma A B, Jiang J H, et al. Research status and development tendency of high-strength and high-conductivity copper alloy. Hot Working Technol, 2013, 42(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201302005.htm
    [3]
    Ullbrand J M, Córdoba J M, Tamayo-Ariztondo J, et al. Thermomechanical properties of copper-carbon nanofibre composites prepared by spark plasma sintering and hot pressing. Compos Sci Technol, 2010, 70(16): 2263 DOI: 10.1016/j.compscitech.2010.08.016
    [4]
    Tamayo-Ariztondo J, Córdoba J M, Odén M, et al. Effect of heat treatment of carbon nanofibres on electroless copper deposition. Compos Sci Technol, 2010, 70(16): 2269 DOI: 10.1016/j.compscitech.2010.07.015
    [5]
    王晔, 燕青芝, 张肖路, 等. 石墨对铜基粉末冶金闸片材料性能的影响. 粉末冶金技术, 2012, 30(6): 432 DOI: 10.3969/j.issn.1001-3784.2012.06.006

    Wang Y, Yan Q Z, Zhang X L, et al. Effect of graphite on properties of copper-based brake pads material made by powder metallurgy. Powder Metall Technol, 2012, 30(6): 432 DOI: 10.3969/j.issn.1001-3784.2012.06.006
    [6]
    Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530 DOI: 10.1126/science.1158877
    [7]
    Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 DOI: 10.1126/science.1157996
    [8]
    Rafiee M A. Graphene-based Composite Materials[Dissertation]. Troy: Rensselaer Polytechnic Institute, 2011
    [9]
    Renteria J, Legedza S, Salgado R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater Des, 2015, 88: 214 DOI: 10.1016/j.matdes.2015.08.135
    [10]
    Qi X Y, Pu K Y, Li H, et al. Amphiphilic graphene composites. Angew Chem, 2010, 122: 9616 DOI: 10.1002/ange.201004497
    [11]
    Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev, 2012, 41(2): 666 DOI: 10.1039/C1CS15078B
    [12]
    Gao X, Yue H Y, Guo E J, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technol, 2016, 301: 601 DOI: 10.1016/j.powtec.2016.06.045
    [13]
    Sadowski P, Kowalczyk-Gajewska K, Stupkiewicz S. Classical estimates of the effective thermoelastic properties of copper-graphene composites. Compos Part B, 2015, 80: 278 DOI: 10.1016/j.compositesb.2015.06.007
    [14]
    Chu K, Wang F, Wang X H, et al. Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater Sci Eng A, 2018, 713: 269 DOI: 10.1016/j.msea.2017.12.080
    [15]
    Wang L D, Yang Z Y, Cui Y, et al. Graphene-copper composite with micro-layered grains and ultrahigh strength. Sci Rep, 2017, 7: 41896 DOI: 10.1038/srep41896
    [16]
    Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater, 2013, 25(46): 6724 DOI: 10.1002/adma.201302495
    [17]
    Kim W J, Lee T J, Han S H. Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling. microstructure and mechanical properties, Carbon, 2014, 69(4): 55 http://www.sciencedirect.com/science/article/pii/s0008622313011238
    [18]
    凌自成, 闫翠霞, 史庆南, 等. 石墨烯增强金属基复合材料的制备方法研究进展. 材料导报, 2015, 29(4): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201507027.htm

    Ling Z C, Yan C X, Shi Q N, et al. Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets. Mater Rev, 2015, 29(4): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201507027.htm
    [19]
    Tang Y X, Yang X M, Wang R R, et al. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids. Mater Sci Eng A, 2014, 599(2): 247 http://www.sciencedirect.com/science/article/pii/S0921509314000926
    [20]
    Hsieh C C, Liu W R. Synthesis and characterization of nitrogen-doped graphene nanosheets/copper composite film for thermal dissipation. Carbon, 2017, 118: 1 DOI: 10.1016/j.carbon.2017.03.025
    [21]
    Cho S C, Kikuchi K, Kawasaki A, et al. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite. Nanotechnology, 2012, 23(31): 315705 DOI: 10.1088/0957-4484/23/31/315705
    [22]
    Koppad P G, Ram H R A, Kashyap K T. On shear-lag and thermal mismatch model in multiwalled carbon nanotube/copper matrix nanocomposites. J Alloys Compd, 2013, 549(2): 82 http://www.sciencedirect.com/science/article/pii/S0925838812016477
  • Related Articles

    [1]ZHANG Xiuling, CHEN Yuhong, QI Wubin, ZHANG Qiang, HAI Wanxiu. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering[J]. Powder Metallurgy Technology, 2024, 42(2): 165-169, 176. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090009
    [2]WAN Lin, ZHANG Jifeng, SUN Lu, QIU Tianxu, SHEN Xiaoping. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 508-515. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090001
    [3]ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009
    [4]CHEN Jin, XIONG Ning, GE Qi-lu, WANG Tie-jun, CAI Jing, LIU Gui-Rong. Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(2): 132-137. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
    [5]ZHANG Bing-qing, WANG Qi, WANG Sui, WANG Hua-lei, JIANG Feng, SUN Jun. Study on the microstructure and properties of powder-forged gear materials[J]. Powder Metallurgy Technology, 2020, 38(2): 113-120. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.005
    [6]ZHANG Ren, WANG Xu-lei, HE Xin-bo. Effect of Cr coating on microstructure and properties of graphite flake/Cu composites[J]. Powder Metallurgy Technology, 2019, 37(4): 248-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.002
    [7]ZHOU Qiang, WEI Shi-chao, YANG Shu-zhong, LUO Li, CHANG De-min. Preparation of FeCuNiSnCo powder by mechanical alloying and the research on physical properties of its matrix material[J]. Powder Metallurgy Technology, 2019, 37(1): 30-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.005
    [8]NI Feng, FU Li-hua, DENG Pan, WU Peng-fei. Effects of SiO2-B2O3-Al2O3 scaling powder on microstructures and properties of Cu-C-SnO2 porous materials sintered by powders[J]. Powder Metallurgy Technology, 2018, 36(5): 335-341. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.003
    [9]LIU Gui-min, DU Lin-fei, YAN Tao, ZHU Shuo, HUI Yang. Effect of rare earth Ce on the microstructure and properties of Cu-Al2O3 composites[J]. Powder Metallurgy Technology, 2018, 36(3): 196-200, 216. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.006
    [10]Thermophysical Properties of ZrCp/W Composites Prepared by Hot-pressing[J]. Powder Metallurgy Technology, 2002, 20(5): 263-266. DOI: 10.3321/j.issn:1001-3784.2002.05.001
  • Cited by

    Periodical cited type(17)

    1. 蔡锦文,冯可芹,王海波,刘艳芳,陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究. 材料导报. 2024(01): 158-163 .
    2. 陈施润,陈文革,钱颖,张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究. 中国腐蚀与防护学报. 2024(01): 107-118 .
    3. 张可萌,柳培,王杰,侯博,刘振伟,高岩. Cu-(石墨烯/6063Al)复合材料的设计制备及组织性能研究. 粉末冶金工业. 2024(02): 75-80 .
    4. 冯俊俊,张会,李亚鹏,段瑾瑜,刘禹,蒲卓林. 石墨烯负载铜增强铜基块体复合材料的制备及其性能. 复合材料学报. 2023(01): 485-498 .
    5. 施琴,朱和军. 银包覆过渡族金属硒化物的制备及银基复合材料性能. 粉末冶金技术. 2023(06): 536-542 . 本站查看
    6. 陈华强,陶应啟,李晓静,吴云洪,王吉应,叶墨稼,余贤旺. 化学气相沉积法及机械混合法添加石墨烯对铜铬触头性能的影响. 功能材料. 2023(12): 12148-12153+12162 .
    7. 陈伟光,刘娟. 添加剂对传感器用PCB环氧树脂板真空蒸镀铜层参数优化及结构的影响. 材料保护. 2022(01): 159-164 .
    8. 李慧莹,王玄玉,孙淑宝,刘志龙,董文杰. 镀镍石墨烯制备及红外干扰性能. 含能材料. 2022(12): 1213-1218 .
    9. 文国富,梁艳娟,王秀飞,伊春强,尹彩流,蒙洁丽. 球磨参数对石墨烯增强铜基复合材料性能的影响. 润滑与密封. 2021(01): 103-110 .
    10. 马强,王健,韦琪龙,路承功,魏智强. 碳包覆CdS纳米颗粒的光学性能研究. 粉末冶金技术. 2021(01): 54-61 . 本站查看
    11. 梁燕,王献辉,李航宇,倪菁艺,金千贺. 石墨烯增强铜基复合材料的制备及研究现状. 稀有金属材料与工程. 2021(07): 2607-2619 .
    12. 施琴,朱和军. 银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响. 粉末冶金技术. 2020(04): 257-261+274 . 本站查看
    13. 赵敬,彭倚天. 石墨烯表面化学镀铜及铜/石墨烯复合材料的性能研究. 电镀与涂饰. 2020(21): 1481-1485 .
    14. 冯孟奇,贾淑果,李韶林,宋克兴,国秀花,张祥峰,林焕然. 铜/碳复合材料的研究进展. 材料热处理学报. 2020(12): 25-36 .
    15. 刘宇宁,彭冬冬,张辉,甘春雷. 烧结压力对石墨烯增强铜基复合材料组织性能的影响. 功能材料. 2019(01): 1183-1187+1191 .
    16. 郭申申,凤仪,赵浩,钱刚,张学斌. 石墨烯增强铜基复合材料的制备及其微观组织与性能研究. 金属功能材料. 2019(04): 16-22 .
    17. 巩正奇,王灿明,崔洪芝,张文娅. 石墨烯对激光熔覆镍基碳化钨涂层组织及性能影响. 粉末冶金技术. 2019(05): 323-331 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (507) PDF downloads (80) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return