AdvancedSearch
HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
Citation: HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002

Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites

More Information
  • Corresponding author:

    LI Song-lin, E-mail: lisl@csu.edu.cn

  • Received Date: July 23, 2018
  • Ceramic particle-reinforced Fe-2Cu-0.6C low-alloy steel composites (SiC, TiC, and TiB2 ceramic particles in the mass fraction of 0~1.6%) were prepared by the conventional powder pressing/sintering technology at 600 MPa and 1140℃, the microstructures and mechanical properties of composites were investigated. The results show a good interface bonding between the reinforced particles (SiC and TiB2) and the matrix because of the reaction during sintering. The Brinell hardness and tensile strength of the sintered composites added with 1.6% SiC particles by mass increase by 35.9% and 69.4%, respectively, compared with those of Fe-2Cu-0.6C matrix. When 1.2% TiB2 particles by mass are introduced, the hardness and tensile strength of the sintered composites increase by 77.9% and 72.6%, respectively, compared with those of the matrix. Meanwhile, it is noted that the relative density of the TiB2-reinforced low-alloy steel composite also increases by 5.3%. The addition of TiC particles has little effect on the Brinell hardness and tensile strength of the composites due to no reaction between TiC particles and the matrix.
  • [1]
    Efe G C, Ipek M, Zeytin S, et al. An investigation of the effect of SiC particle size on Cu-SiC composites. Composites Part B, 2012, 43(4): 1813 DOI: 10.1016/j.compositesb.2012.01.006
    [2]
    Morris D G, Muñoz-Morris M A. Nanoprecipitation of oxide particles and related high strength in oxide-dispersion-strengthened iron-aluminium-chromium intermetallics. Acta Mater, 2013, 61(12): 4636 DOI: 10.1016/j.actamat.2013.04.034
    [3]
    Cha L M, Lartigue-Korinek S, Walls M, et al. Interface structure and chemistry in a novel steel-based composite Fe-TiB2 obtained by eutectic solidification. Acta Mater, 2012, 60(18): 6382 DOI: 10.1016/j.actamat.2012.08.017
    [4]
    Wang H Y, Jiang Q C, Ma B X, et al. Reactive infiltration synthesis of TiB2-TiC particulates reinforced steel matrix composites. J Alloys Compd, 2005, 391(1-2): 55 DOI: 10.1016/j.jallcom.2004.08.045
    [5]
    Bastwros M, Kim G Y. Ultrasonic spray deposition of SiC nanoparticles for laminate metal composite fabrication. Powder Technol, 2016, 288: 279 DOI: 10.1016/j.powtec.2015.10.039
    [6]
    Yi D Q, Yu P C, Hu B, et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites. Mater Des, 2013, 52: 572 DOI: 10.1016/j.matdes.2013.05.097
    [7]
    Sulima I, Boczkal S, Jaworska L. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB2. Mater Charact, 2016, 118: 560 DOI: 10.1016/j.matchar.2016.07.005
    [8]
    黄小琴, 左爱文, 王哲, 等. SiC含量对铁基复合材料性能的影响. 粉末冶金材料科学与工程, 2014, 19(2): 271 DOI: 10.3969/j.issn.1673-0224.2014.02.018

    Huang X Q, Zuo A W, Wang Z, et al. Performance of iron-based composites reinforced by different SiC contents. Mater Sci Eng Powder Metall, 2014, 19(2): 271 DOI: 10.3969/j.issn.1673-0224.2014.02.018
    [9]
    Song B, Dong S J, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting. J Alloys Compd, 2013, 579(10): 415 http://www.sciencedirect.com/science/article/pii/S0925838813014850
    [10]
    Pelleg J. Reactions in the matrix and interface of the Fe-SiC metal matrix composite system. Mater Sci Eng A, 1999, 269(1-2): 225 DOI: 10.1016/S0921-5093(99)00158-6
    [11]
    Lartigue-Korinek S, Walls M, Haneche N, et al. Interfaces and defects in a successfully hot-rolled steel-based composite Fe-TiB2. Acta Mater, 2015, 98: 297 DOI: 10.1016/j.actamat.2015.07.024
    [12]
    Efe G C, Zeytin S, Bindal C. The effect of SiC particle size on the properties of Cu-SiC composites. Mater Des, 2012, 36: 633 DOI: 10.1016/j.matdes.2011.11.019
    [13]
    张一帆, 纪箴, 刘贵民, 等. Al2O3弥散增强Cu基高导电率复合材料的制备及性能研究. 粉末冶金技术, 2016, 34(5): 346 DOI: 10.3969/j.issn.1001-3784.2016.05.005

    Zhang Y F, Ji Z, Liu G M, et al. Manufacturing process and properties of Al2O3 dispersion strengthened copper-based composite with high electrical conductivity. Powder Metall Technol, 2016, 34(5): 346 DOI: 10.3969/j.issn.1001-3784.2016.05.005
    [14]
    李荣久. 陶瓷-金属复合材料. 北京: 冶金工业出版社, 2004

    Li J R. Ceramic-Metal Composite Material. Beijing: Metallurgical Industry Press, 2004
    [15]
    刘君武, 吕珺, 王建民, 等. 微量SiC颗粒增强铁基合金的摩擦磨损性能研究. 材料热处理学报, 2006, 27(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200601005.htm

    Liu J W, Lv J, Wang J M, et al. Study on tribological properties of sintered ferrous alloys reinforced by SiC particles. Trans Mater Heat Treat, 2006, 27(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200601005.htm
    [16]
    Beygi H, Sajjadi S A, Zebarjad S M. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles. Mater Sci Eng A, 2014, 607: 81 DOI: 10.1016/j.msea.2014.03.050

Catalog

    Article Metrics

    Article views (403) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return