AdvancedSearch
HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
Citation: HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002

Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites

More Information
  • Corresponding author:

    LI Song-lin, E-mail: lisl@csu.edu.cn

  • Received Date: July 23, 2018
  • Ceramic particle-reinforced Fe-2Cu-0.6C low-alloy steel composites (SiC, TiC, and TiB2 ceramic particles in the mass fraction of 0~1.6%) were prepared by the conventional powder pressing/sintering technology at 600 MPa and 1140℃, the microstructures and mechanical properties of composites were investigated. The results show a good interface bonding between the reinforced particles (SiC and TiB2) and the matrix because of the reaction during sintering. The Brinell hardness and tensile strength of the sintered composites added with 1.6% SiC particles by mass increase by 35.9% and 69.4%, respectively, compared with those of Fe-2Cu-0.6C matrix. When 1.2% TiB2 particles by mass are introduced, the hardness and tensile strength of the sintered composites increase by 77.9% and 72.6%, respectively, compared with those of the matrix. Meanwhile, it is noted that the relative density of the TiB2-reinforced low-alloy steel composite also increases by 5.3%. The addition of TiC particles has little effect on the Brinell hardness and tensile strength of the composites due to no reaction between TiC particles and the matrix.
  • [1]
    Efe G C, Ipek M, Zeytin S, et al. An investigation of the effect of SiC particle size on Cu-SiC composites. Composites Part B, 2012, 43(4): 1813 DOI: 10.1016/j.compositesb.2012.01.006
    [2]
    Morris D G, Muñoz-Morris M A. Nanoprecipitation of oxide particles and related high strength in oxide-dispersion-strengthened iron-aluminium-chromium intermetallics. Acta Mater, 2013, 61(12): 4636 DOI: 10.1016/j.actamat.2013.04.034
    [3]
    Cha L M, Lartigue-Korinek S, Walls M, et al. Interface structure and chemistry in a novel steel-based composite Fe-TiB2 obtained by eutectic solidification. Acta Mater, 2012, 60(18): 6382 DOI: 10.1016/j.actamat.2012.08.017
    [4]
    Wang H Y, Jiang Q C, Ma B X, et al. Reactive infiltration synthesis of TiB2-TiC particulates reinforced steel matrix composites. J Alloys Compd, 2005, 391(1-2): 55 DOI: 10.1016/j.jallcom.2004.08.045
    [5]
    Bastwros M, Kim G Y. Ultrasonic spray deposition of SiC nanoparticles for laminate metal composite fabrication. Powder Technol, 2016, 288: 279 DOI: 10.1016/j.powtec.2015.10.039
    [6]
    Yi D Q, Yu P C, Hu B, et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites. Mater Des, 2013, 52: 572 DOI: 10.1016/j.matdes.2013.05.097
    [7]
    Sulima I, Boczkal S, Jaworska L. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB2. Mater Charact, 2016, 118: 560 DOI: 10.1016/j.matchar.2016.07.005
    [8]
    黄小琴, 左爱文, 王哲, 等. SiC含量对铁基复合材料性能的影响. 粉末冶金材料科学与工程, 2014, 19(2): 271 DOI: 10.3969/j.issn.1673-0224.2014.02.018

    Huang X Q, Zuo A W, Wang Z, et al. Performance of iron-based composites reinforced by different SiC contents. Mater Sci Eng Powder Metall, 2014, 19(2): 271 DOI: 10.3969/j.issn.1673-0224.2014.02.018
    [9]
    Song B, Dong S J, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting. J Alloys Compd, 2013, 579(10): 415 http://www.sciencedirect.com/science/article/pii/S0925838813014850
    [10]
    Pelleg J. Reactions in the matrix and interface of the Fe-SiC metal matrix composite system. Mater Sci Eng A, 1999, 269(1-2): 225 DOI: 10.1016/S0921-5093(99)00158-6
    [11]
    Lartigue-Korinek S, Walls M, Haneche N, et al. Interfaces and defects in a successfully hot-rolled steel-based composite Fe-TiB2. Acta Mater, 2015, 98: 297 DOI: 10.1016/j.actamat.2015.07.024
    [12]
    Efe G C, Zeytin S, Bindal C. The effect of SiC particle size on the properties of Cu-SiC composites. Mater Des, 2012, 36: 633 DOI: 10.1016/j.matdes.2011.11.019
    [13]
    张一帆, 纪箴, 刘贵民, 等. Al2O3弥散增强Cu基高导电率复合材料的制备及性能研究. 粉末冶金技术, 2016, 34(5): 346 DOI: 10.3969/j.issn.1001-3784.2016.05.005

    Zhang Y F, Ji Z, Liu G M, et al. Manufacturing process and properties of Al2O3 dispersion strengthened copper-based composite with high electrical conductivity. Powder Metall Technol, 2016, 34(5): 346 DOI: 10.3969/j.issn.1001-3784.2016.05.005
    [14]
    李荣久. 陶瓷-金属复合材料. 北京: 冶金工业出版社, 2004

    Li J R. Ceramic-Metal Composite Material. Beijing: Metallurgical Industry Press, 2004
    [15]
    刘君武, 吕珺, 王建民, 等. 微量SiC颗粒增强铁基合金的摩擦磨损性能研究. 材料热处理学报, 2006, 27(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200601005.htm

    Liu J W, Lv J, Wang J M, et al. Study on tribological properties of sintered ferrous alloys reinforced by SiC particles. Trans Mater Heat Treat, 2006, 27(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200601005.htm
    [16]
    Beygi H, Sajjadi S A, Zebarjad S M. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles. Mater Sci Eng A, 2014, 607: 81 DOI: 10.1016/j.msea.2014.03.050
  • Related Articles

    [1]ZHANG Xu, SHI Siyang, ZHANG Tengyu, TIAN Jin, WU Yake, WANG Sui, ZHAO Zhenzhi, JIANG Feng. Microstructure and properties of alumina ceramic particle reinforced Fe–Ni–Mo–C–Cu composites prepared by powder forging[J]. Powder Metallurgy Technology, 2024, 42(3): 275-282. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070015
    [2]GAO Wenzhe, HAN Xiao, WEI Haibin, LU Zhengzhen, ZHANG Li, LI Xiaofeng. Diamond reinforced aluminum matrix composites by laser powder bed fusion[J]. Powder Metallurgy Technology, 2024, 42(2): 122-127. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030002
    [3]LIU Guimin, HUI Yang, DU Jianhua, LAN Hai. Friction and wear properties of particle-reinforced iron-based composites under continuous high temperature braking[J]. Powder Metallurgy Technology, 2023, 41(1): 63-70. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030031
    [4]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [5]LI Shao-fu, YANG Ya-feng. Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites[J]. Powder Metallurgy Technology, 2022, 40(5): 421-430. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050017
    [6]ZHANG Su-qing, SU Qian, YU Huan, XIA Jin-huan, MA Bai-chang, ZHUANG Hai-hua, ZHOU Ji-xue. Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 512-519. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120003
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]YANG Yu-cheng, PAN Yu, LU Xin, YU Ai-hua, HUI Tai-long, LIU Yan-jun. Research progress on particle-reinforced titanium matrix composites prepared by powder metallurgy method[J]. Powder Metallurgy Technology, 2020, 38(2): 150-158. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.011
    [9]REN Shu-xin, CHEN Wen-ge, FENG Tao, OUYANG Fang-ming. Microstructure and properties of carbon fiber reinforced Fe-Cu based friction materials prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2020, 38(2): 104-112. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.004
    [10]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
  • Cited by

    Periodical cited type(5)

    1. 欧阳维,翟博,陈文琳,宋奎晶,陈畅,钟志宏. TiC颗粒增强FeCrCoMnNi基复合材料的微观组织与力学性能. 粉末冶金技术. 2024(04): 338-345 . 本站查看
    2. 汪家瑜,方华婵,张芊芊,段志英,方舟,张茁,陈卓,许永祥,任子安. 碳纤维粉末改性铁基粉末冶金材料的组织与性能. 粉末冶金材料科学与工程. 2023(04): 390-403 .
    3. 刘增林,韩伟,王彦康,王涛,吕伟龙. 陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能. 粉末冶金技术. 2022(06): 527-534 . 本站查看
    4. 熊陶亮. 钢铁冶金流程节能技术及要点分析. 中国金属通报. 2020(04): 111-112 .
    5. 耿文霞,王秋林,万斌,徐如涛,李昂,赵龙志. TiC_p/Fe复合材料的界面反应. 粉末冶金工业. 2020(04): 51-56 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (400) PDF downloads (25) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return