Citation: | HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002 |
[1] |
Efe G C, Ipek M, Zeytin S, et al. An investigation of the effect of SiC particle size on Cu-SiC composites. Composites Part B, 2012, 43(4): 1813 DOI: 10.1016/j.compositesb.2012.01.006
|
[2] |
Morris D G, Muñoz-Morris M A. Nanoprecipitation of oxide particles and related high strength in oxide-dispersion-strengthened iron-aluminium-chromium intermetallics. Acta Mater, 2013, 61(12): 4636 DOI: 10.1016/j.actamat.2013.04.034
|
[3] |
Cha L M, Lartigue-Korinek S, Walls M, et al. Interface structure and chemistry in a novel steel-based composite Fe-TiB2 obtained by eutectic solidification. Acta Mater, 2012, 60(18): 6382 DOI: 10.1016/j.actamat.2012.08.017
|
[4] |
Wang H Y, Jiang Q C, Ma B X, et al. Reactive infiltration synthesis of TiB2-TiC particulates reinforced steel matrix composites. J Alloys Compd, 2005, 391(1-2): 55 DOI: 10.1016/j.jallcom.2004.08.045
|
[5] |
Bastwros M, Kim G Y. Ultrasonic spray deposition of SiC nanoparticles for laminate metal composite fabrication. Powder Technol, 2016, 288: 279 DOI: 10.1016/j.powtec.2015.10.039
|
[6] |
Yi D Q, Yu P C, Hu B, et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites. Mater Des, 2013, 52: 572 DOI: 10.1016/j.matdes.2013.05.097
|
[7] |
Sulima I, Boczkal S, Jaworska L. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB2. Mater Charact, 2016, 118: 560 DOI: 10.1016/j.matchar.2016.07.005
|
[8] |
黄小琴, 左爱文, 王哲, 等. SiC含量对铁基复合材料性能的影响. 粉末冶金材料科学与工程, 2014, 19(2): 271 DOI: 10.3969/j.issn.1673-0224.2014.02.018
Huang X Q, Zuo A W, Wang Z, et al. Performance of iron-based composites reinforced by different SiC contents. Mater Sci Eng Powder Metall, 2014, 19(2): 271 DOI: 10.3969/j.issn.1673-0224.2014.02.018
|
[9] |
Song B, Dong S J, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting. J Alloys Compd, 2013, 579(10): 415 http://www.sciencedirect.com/science/article/pii/S0925838813014850
|
[10] |
Pelleg J. Reactions in the matrix and interface of the Fe-SiC metal matrix composite system. Mater Sci Eng A, 1999, 269(1-2): 225 DOI: 10.1016/S0921-5093(99)00158-6
|
[11] |
Lartigue-Korinek S, Walls M, Haneche N, et al. Interfaces and defects in a successfully hot-rolled steel-based composite Fe-TiB2. Acta Mater, 2015, 98: 297 DOI: 10.1016/j.actamat.2015.07.024
|
[12] |
Efe G C, Zeytin S, Bindal C. The effect of SiC particle size on the properties of Cu-SiC composites. Mater Des, 2012, 36: 633 DOI: 10.1016/j.matdes.2011.11.019
|
[13] |
张一帆, 纪箴, 刘贵民, 等. Al2O3弥散增强Cu基高导电率复合材料的制备及性能研究. 粉末冶金技术, 2016, 34(5): 346 DOI: 10.3969/j.issn.1001-3784.2016.05.005
Zhang Y F, Ji Z, Liu G M, et al. Manufacturing process and properties of Al2O3 dispersion strengthened copper-based composite with high electrical conductivity. Powder Metall Technol, 2016, 34(5): 346 DOI: 10.3969/j.issn.1001-3784.2016.05.005
|
[14] |
李荣久. 陶瓷-金属复合材料. 北京: 冶金工业出版社, 2004
Li J R. Ceramic-Metal Composite Material. Beijing: Metallurgical Industry Press, 2004
|
[15] |
刘君武, 吕珺, 王建民, 等. 微量SiC颗粒增强铁基合金的摩擦磨损性能研究. 材料热处理学报, 2006, 27(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200601005.htm
Liu J W, Lv J, Wang J M, et al. Study on tribological properties of sintered ferrous alloys reinforced by SiC particles. Trans Mater Heat Treat, 2006, 27(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200601005.htm
|
[16] |
Beygi H, Sajjadi S A, Zebarjad S M. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles. Mater Sci Eng A, 2014, 607: 81 DOI: 10.1016/j.msea.2014.03.050
|
1. |
欧阳维,翟博,陈文琳,宋奎晶,陈畅,钟志宏. TiC颗粒增强FeCrCoMnNi基复合材料的微观组织与力学性能. 粉末冶金技术. 2024(04): 338-345 .
![]() | |
2. |
汪家瑜,方华婵,张芊芊,段志英,方舟,张茁,陈卓,许永祥,任子安. 碳纤维粉末改性铁基粉末冶金材料的组织与性能. 粉末冶金材料科学与工程. 2023(04): 390-403 .
![]() | |
3. |
刘增林,韩伟,王彦康,王涛,吕伟龙. 陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能. 粉末冶金技术. 2022(06): 527-534 .
![]() | |
4. |
熊陶亮. 钢铁冶金流程节能技术及要点分析. 中国金属通报. 2020(04): 111-112 .
![]() | |
5. |
耿文霞,王秋林,万斌,徐如涛,李昂,赵龙志. TiC_p/Fe复合材料的界面反应. 粉末冶金工业. 2020(04): 51-56 .
![]() |