Citation: | FANG Xiao-liang, ZHENG He-jing. Application and prospect of copper-based powder metallurgy friction materials[J]. Powder Metallurgy Technology, 2020, 38(4): 313-318. DOI: 10.19591/j.cnki.cn11-1974/tf.2019040008 |
[1] |
Kolluri D, Ghosh A K, Bijwe J. Analysis of load-speed sensitivity of friction composites based on various synthetic graphite. Wear, 2009, 266(1): 266 http://www.sciencedirect.com/science/article/pii/S004316480800344X
|
[2] |
鲁乃光. 烧结金属摩擦材料现状与发展动态. 粉末冶金技术, 2002, 20(5): 294 DOI: 10.3321/j.issn:1001-3784.2002.05.008
Lu N G. The present state and tendency of sintered friction materials in the world. Powder Metall Technol, 2002, 20(5): 294 DOI: 10.3321/j.issn:1001-3784.2002.05.008
|
[3] |
牟超. 摩擦条件对制动闸片摩擦磨损性能的影响[学位论文]. 大连: 大连交通大学, 2008
Mou C. Effect of Braking Condition on the Friction and Wear Properties of Brake Pad[Dissertation]. Dalian: Dalian Jiaotong University, 2008
|
[4] |
韩凤麟. 粉末冶金基础教程. 广州: 华南理工大学出版社, 2004
Han F L. Basic Course of Powder Metallurgy. Guangzhou: South China University of Technology Press, 2004
|
[5] |
蔡康健, 何永乐, 吕锋, 等. 飞机粉末冶金摩擦材料未来发展的探讨. 航空精密制造技术, 2007, 43(5): 48 DOI: 10.3969/j.issn.1003-5451.2007.05.013
Cai K J, He Y L, Lü F, et al. Probe into powder metallurgy brake material of plane development in future. Aviat Precis Manuf Technol, 2007, 43(5): 48 DOI: 10.3969/j.issn.1003-5451.2007.05.013
|
[6] |
姚萍屏, 张忠义, 汪琳, 等. 烧结温度对铁基粉末冶金航空刹车材料摩擦磨损性能的影响. 润滑与密封, 2007, 32(6): 1 DOI: 10.3969/j.issn.0254-0150.2007.06.001
Yao P P, Zhang Z Y, Wang L, et al. Effect of sintering temperature on frictional wear behavior of iron-based powder metallurgy aircraft brake materials. Lubr Eng, 2007, 32(6): 1 DOI: 10.3969/j.issn.0254-0150.2007.06.001
|
[7] |
袁国洲, 汪琳, 谢剑峰, 等. 混料时间对航空刹车摩擦材料性能的影响. 粉末冶金技术, 2004, 22(1): 26 DOI: 10.3321/j.issn:1001-3784.2004.01.007
Yuan G Z, Wang L, Xie J F, et al. Influence of mixing time on characteristics of aircraft friction materials. Powder Metall Technol, 2004, 22(1): 26 DOI: 10.3321/j.issn:1001-3784.2004.01.007
|
[8] |
王广达, 方玉诚, 罗锡裕. 高速列车摩擦制动材料的研究进展. 中国冶金, 2007, 17(7): 12 DOI: 10.3969/j.issn.1006-9356.2007.07.003
Wang G D, Fang Y C, Luo X Y. Research and development of materials for friction braking on high speed train. Chin Metall, 2007, 17(7): 12 DOI: 10.3969/j.issn.1006-9356.2007.07.003
|
[9] |
任志俊. 粉末冶金摩擦材料的研究发展概况. 机车车辆工艺, 2001(6): 1 DOI: 10.3969/j.issn.1007-6034.2001.06.001
Ren Z J. A review of R&D of powder metallurgic friction materials. Locomot Rolling Stock Technol, 2001(6): 1 DOI: 10.3969/j.issn.1007-6034.2001.06.001
|
[10] |
王秀飞, 许桂生, 韩娟, 等. 添加ZrO2对铜基摩擦材料摩擦磨损性能的影响. 粉末冶金技术, 2013, 31(1): 22 DOI: 10.3969/j.issn.1001-3784.2013.01.005
Wang X F, Xu G S, Han J, et al. Effect of zirconium dioxide addition on friction and wear properties of Cu-based friction materials. Powder Metall Technol, 2013, 31(1): 22 DOI: 10.3969/j.issn.1001-3784.2013.01.005
|
[11] |
赵田臣, 孟凡爱, 裴龙刚. 高速列车金属陶瓷复合材料制动闸片研制. 石家庄铁道学院学报, 2004, 17(1): 64 DOI: 10.3969/j.issn.2095-0373.2004.01.015
Zhao T C, Meng F A, Pei L G. Fabrication of metal-matrix ceramics composite brake for high-speed trains. J Shijiazhuang Railway Inst, 2004, 17(1): 64 DOI: 10.3969/j.issn.2095-0373.2004.01.015
|
[12] |
高飞, 宋宝韫, 符蓉, 等. 时速300 km高速列车铜基粒子强化闸片的研究. 中国铁道科学, 2007, 28(3): 62 DOI: 10.3321/j.issn:1001-4632.2007.03.012
Gao F, Song B Y, Fu R, et al. Study on the particle reinforced Cu matrix brake pads for 300 km·h-1 high speed trains. China Railway Sci, 2007, 28(3): 62 DOI: 10.3321/j.issn:1001-4632.2007.03.012
|
[13] |
王磊, 潘祺睿, 朱松, 等. 高速列车铜基粉末冶金闸片的制备及摩擦磨损性能. 机械工程材料, 2017, 41(6): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201706013.htm
Wang L, Pan Q R, Zhu S, et al. Fabrication of copper-based powder metallurgy brake pad for high-speed train and its friction and wear property. Mater Mech Eng, 2017, 41(6): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201706013.htm
|
[14] |
樊坤阳. 海基风电机组用铜基粉末冶金摩擦材料及其耐蚀性研究[学位论文]. 长沙: 中南大学, 2011
Fan K Y. Study on Copper-Based Powder Metallurgy Friction Materials and Corrosion Resistance for Offshore Wind Turbines[Dissertation]. Changsha: Central South University, 2011
|
[15] |
韩委委. 高速制动铜基粉末冶金摩擦材料的设计及制备[学位论文]. 南昌: 南昌大学, 2018
Han W W. Design and Fabrication of Copper-Base Powder Metallurgy Friction Material for Braking of High Speed Train[Dissertation]. Nanchang: Nanchang University, 2018
|
[16] |
Wang F H, Liu Y. Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber. Mater Des, 2014, 57: 449 DOI: 10.1016/j.matdes.2014.01.017
|
[17] |
于潇, 郭志猛, 郝俊杰, 等. 风电用铜基粉末冶金制动闸片的制备与性能. 粉末冶金材料科学与工程, 2014, 19(1): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201401011.htm
Yu X, Guo Z M, Hao J J, et al. Preparation and properties of copper-based powder metallurgy brake pad for wind turbine. Mater Sci Eng Powder Metall, 2014, 19(1): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201401011.htm
|
[18] |
姚萍屏. 一种大功率风电机组用铜基粉末冶金制动闸片的制备工艺: 中国专利, 10186011. 2010-11-03
Yao P P. The Preparation Technology of a Copper-Based Powder Metallurgy Brake Pad for High Power Wind Turbine: China Patent, 10186011. 2010-11-03
|
[19] |
刘伯威, 杨阳, 张逸帆. 铜锡合金粉含量对汽车摩擦材料性能的影响. 中国有色金属学报, 2017, 27(1): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201701016.htm
Liu B W, Yang Y, Zhang Y F. Effect of copper-tin alloy powder content on properties of automotive friction material. Chin J Nonferrous Met, 2017, 27(1): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201701016.htm
|
[20] |
Gong T M, Yao P P, Xiao Y L, et al. Wear map for a copper-based friction clutch material under oil lubrication. Wear, 2015, 328-329: 270 http://smartsearch.nstl.gov.cn/paper_detail.html?id=88e8579d91f1c8cae2ac872b778f2de3
|
[21] |
关庆丰, 李晓宇, 李光玉, 等. 碳纤维增强摩阻材料的摩擦磨损特性研究. 摩擦学学报, 1999, 19(1): 87 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX901.016.htm
Guan Q F, Li X Y, Li G Y, et al. The friction and wear behaviors of carbon fiber reinforced antifriction material. Tribology, 1999, 19(1): 87 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX901.016.htm
|
1. |
疏敏,刘鹏,黄秋良,霍冬亮. 球磨法制备高流动性铝合金粉末技术研究. 化学工程与装备. 2024(01): 38-40 .
![]() | |
2. |
陈丽芳,陈刚. 电瓷废料的加工及资源化利用现状. 佛山陶瓷. 2024(04): 1-4+14 .
![]() | |
3. |
张进,易世彬,杨建辉,顾磊. 复合生态型透水砖的制备与性能研究. 绿色建筑. 2024(06): 167-174 .
![]() |