Citation: | MA Hui, LUO Ji. Preparation and high temperature oxidation properties of TiC−NiCrCoMo steel bonded cemented carbides[J]. Powder Metallurgy Technology, 2021, 39(2): 147-152. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090009 |
[1] |
范安平, 肖平安, 李晨坤, 等. TiC基钢结硬质合金的研究现状. 粉末冶金技术, 2013, 31(4): 298 DOI: 10.3969/j.issn.1001-3784.2013.04.011
Fan A P, Xiao P A, Li C K, et al. Research situation of TiC-based steel bonded carbide. Powder Metall Technol, 2013, 31(4): 298 DOI: 10.3969/j.issn.1001-3784.2013.04.011
|
[2] |
范兴平, 范维. 钢结硬质合金研究现状与发展趋势. 铸造技术, 2017, 38(3): 507
Fan X P, Fan W. Research status and development trend of steel bonded cemented carbides. Foundry Technol, 2017, 38(3): 507
|
[3] |
李小龙, 周燕, 刘江, 等. 高速切削铝合金用硬质合金刀具磨损机理研究. 粉末冶金技术, 2018, 36(4): 256
Li X L, Zhou Y, Liu J, et al. Research on wear mechanism of carbide tool for high-speed cutting aluminum alloy. Powder Metall Technol, 2018, 36(4): 256
|
[4] |
张雷, 陈文, 孙海身, 等. TiC含量对钢结硬质合金组织和性能的影响. 稀有金属与硬质合金, 2016, 44(6): 64
Zhang L, Chen W, Sun H S, et al. Effect of TiC content on microstructure and properties of steel bonded cemented carbides. Rare Met Cement Carb, 2016, 44(6): 64
|
[5] |
Lee Y H, Ko S, Park H, et al. Effect of TiC particle size on high temperature oxidation behavior of TiC reinforced stainless steel. Appl Surf Sci, 2019, 480: 951 DOI: 10.1016/j.apsusc.2019.02.138
|
[6] |
Ortner H M, Ettmayer P, Kolaska H. The history of the technological progress of hardmetals. Int J Refract Met Hard Mater, 2014, 44: 148 DOI: 10.1016/j.ijrmhm.2013.07.014
|
[7] |
Lee Y H, Hyunh X K, Kim J S. Spark plasma sintering of Fe−TiC composite powders. J Korean Powder Metall Inst, 2014, 21(5): 382 DOI: 10.4150/KPMI.2014.21.5.382
|
[8] |
Lee B, Kim J S. Sintering of Fe−30wt% TiC composite powders fabricated from (Fe, TiH2, C) powder mixture. J Korean Powder Metall Inst, 2015, 22(5): 356 DOI: 10.4150/KPMI.2015.22.5.356
|
[9] |
Oh N R, Lee S K, Hwang K C, et al. Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC−steel composite. Scr Mater, 2016, 112: 123 DOI: 10.1016/j.scriptamat.2015.09.028
|
[10] |
Henderson M B, Arrell D, Larsson R, et al. Nickel based superalloy welding practices for industrial gas turbine applications. Sci Technol Weld Joining, 2004, 9(1): 13 DOI: 10.1179/136217104225017099
|
[11] |
Lin Y C, Chen X M, Wen D X, et al. A physically-based constitutive model for a typical nickel-based superalloy. Comput Mater Sci, 2014, 83: 282 DOI: 10.1016/j.commatsci.2013.11.003
|
[12] |
Chen X M, Lin Y C, Wen D X, et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater Des, 2014, 57: 568 DOI: 10.1016/j.matdes.2013.12.072
|
[13] |
Changn S H, Chang P Y. Investigation into the sintered behavior and properties of nanostructured WC−Co−Ni−Fe hard metal alloys. Mater Sci Eng A, 2014, 606: 150 DOI: 10.1016/j.msea.2014.03.096
|
[14] |
Lin N, Wu C H, He Y H, et al. Effect of Mo and Co additions on the microstructure and properties of WC−TiC−Ni cemented carbides. Int J Refract Met Hard Mater, 2012, 30(1): 107 DOI: 10.1016/j.ijrmhm.2011.07.011
|
[15] |
Rajabi A, Ghazali M J, Syarif J, et al. Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders. Chem Eng J, 2014, 255: 445 DOI: 10.1016/j.cej.2014.06.078
|
[16] |
株洲硬质合金集团有限公司. 钢结硬质合金. 北京: 冶金工业出版社, 1982
Zhuzhou Cemented Carbide Group Co. Ltd. Steel Bonded Cemented Carbide. Beijing: Metallurgical Industry Press, 1982
|
[17] |
Guo Z X, Xiong J, Yang M, et al. Effect of Mo2C on the microstructure and properties of WC−TiC−Ni cemented carbide. Int J Refract Met Hard Mater, 2008, 26(6): 601 DOI: 10.1016/j.ijrmhm.2008.01.007
|
[1] | M.C.Baran, A.H.Graham, A.B.Davala, R.J.Causton, C.Schade. A auperior sinter-hardenable material[J]. Powder Metallurgy Technology, 2016, 34(2): 141-148. DOI: 10.3969/j.issn.1001-3784.2016.02.012 |
[2] | Jia Jixiang, Liao Xiangwei, Li Degang, Guo Qingtao, Ni Chongyi, Peng Chunlin. Study on the Properties of Fe-Mo-Ni-Cu-C Sinter Hardening Steel[J]. Powder Metallurgy Technology, 2014, 32(6): 451-456. |
[3] | Effect of Cooling Rates During Sinter-Hardening[J]. Powder Metallurgy Technology, 2014, 32(2): 144-152. |
[4] | Properties and applications of high density sinter-hardening materials[J]. Powder Metallurgy Technology, 2014, 32(1): 68-73. DOI: 10.3969/j.issn.1001-3784.2014.01.013 |
[5] | Alloy development of sinter-hardenable compositions[J]. Powder Metallurgy Technology, 2011, 29(3): 232-235. |
[6] | Bruce Lindsley, Thomas Murphy. Dimensional precision in sinter-hardening PM steels[J]. Powder Metallurgy Technology, 2009, 27(6): 468-470. |
[7] | Development of a dual-phase precipitation-hardening PM stainless steel[J]. Powder Metallurgy Technology, 2009, 27(4): 305-312. |
[8] | A review of current sinter-hardening technology[J]. Powder Metallurgy Technology, 2009, 27(2): 148-152. |
[9] | Study on the effects of the power and raw material on nanodiamond synthesis by laser irradiation[J]. Powder Metallurgy Technology, 2007, 25(3): 203-208. DOI: 10.3321/j.issn:1001-3784.2007.03.010 |
[10] | Transfer case sprocket production through the sinter hardening process[J]. Powder Metallurgy Technology, 2003, 21(6): 327-333. DOI: 10.3321/j.issn:1001-3784.2003.06.002 |