AdvancedSearch
MA Hui, LUO Ji. Preparation and high temperature oxidation properties of TiC−NiCrCoMo steel bonded cemented carbides[J]. Powder Metallurgy Technology, 2021, 39(2): 147-152. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090009
Citation: MA Hui, LUO Ji. Preparation and high temperature oxidation properties of TiC−NiCrCoMo steel bonded cemented carbides[J]. Powder Metallurgy Technology, 2021, 39(2): 147-152. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090009

Preparation and high temperature oxidation properties of TiC−NiCrCoMo steel bonded cemented carbides

More Information
  • Corresponding author:

    LUO Ji, E-mail: luoji@ustb.edu.cn

  • Received Date: September 21, 2019
  • Available Online: March 26, 2021
  • The TiC‒NiCrCoMo steel bonded cemented carbides with high temperature oxidation resistance were prepared by powder metallurgy technology, using nickel-based alloys (NiCrCoMo) as the binder phase and titanium carbide as the hard phase. The TiC‒NiCrCoMo steel bonded cemented carbides with the best comprehensive performance were obtained by the optimization of the sintering process. The oxidation kinetics curves of the TiC‒NiCrCoMo steel bonded cemented carbides at different temperatures were measured, and the microstructure of the oxide layer was analyzed. The results show that, the TiC‒NiCrCoMo steel bonded cemented carbides with the best comprehensive performance are obtained by sintering at 1280 ℃ with the density of 6.01 g/cm3, the hardness of HRC 65, and the flexural strength of 1100 MPa. With the increase of the oxidation temperature, the oxidation degree of the TiC‒NiCrCoMo steel bonded cemented carbides increases significantly. Compared with the oxidation kinetics curves of 316L stainless steel bonded cemented carbides, the TiC‒NiCrCoMo steel bonded cemented carbides show the excellent high temperature oxidation resistance.
  • [1]
    范安平, 肖平安, 李晨坤, 等. TiC基钢结硬质合金的研究现状. 粉末冶金技术, 2013, 31(4): 298 DOI: 10.3969/j.issn.1001-3784.2013.04.011

    Fan A P, Xiao P A, Li C K, et al. Research situation of TiC-based steel bonded carbide. Powder Metall Technol, 2013, 31(4): 298 DOI: 10.3969/j.issn.1001-3784.2013.04.011
    [2]
    范兴平, 范维. 钢结硬质合金研究现状与发展趋势. 铸造技术, 2017, 38(3): 507

    Fan X P, Fan W. Research status and development trend of steel bonded cemented carbides. Foundry Technol, 2017, 38(3): 507
    [3]
    李小龙, 周燕, 刘江, 等. 高速切削铝合金用硬质合金刀具磨损机理研究. 粉末冶金技术, 2018, 36(4): 256

    Li X L, Zhou Y, Liu J, et al. Research on wear mechanism of carbide tool for high-speed cutting aluminum alloy. Powder Metall Technol, 2018, 36(4): 256
    [4]
    张雷, 陈文, 孙海身, 等. TiC含量对钢结硬质合金组织和性能的影响. 稀有金属与硬质合金, 2016, 44(6): 64

    Zhang L, Chen W, Sun H S, et al. Effect of TiC content on microstructure and properties of steel bonded cemented carbides. Rare Met Cement Carb, 2016, 44(6): 64
    [5]
    Lee Y H, Ko S, Park H, et al. Effect of TiC particle size on high temperature oxidation behavior of TiC reinforced stainless steel. Appl Surf Sci, 2019, 480: 951 DOI: 10.1016/j.apsusc.2019.02.138
    [6]
    Ortner H M, Ettmayer P, Kolaska H. The history of the technological progress of hardmetals. Int J Refract Met Hard Mater, 2014, 44: 148 DOI: 10.1016/j.ijrmhm.2013.07.014
    [7]
    Lee Y H, Hyunh X K, Kim J S. Spark plasma sintering of Fe−TiC composite powders. J Korean Powder Metall Inst, 2014, 21(5): 382 DOI: 10.4150/KPMI.2014.21.5.382
    [8]
    Lee B, Kim J S. Sintering of Fe−30wt% TiC composite powders fabricated from (Fe, TiH2, C) powder mixture. J Korean Powder Metall Inst, 2015, 22(5): 356 DOI: 10.4150/KPMI.2015.22.5.356
    [9]
    Oh N R, Lee S K, Hwang K C, et al. Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC−steel composite. Scr Mater, 2016, 112: 123 DOI: 10.1016/j.scriptamat.2015.09.028
    [10]
    Henderson M B, Arrell D, Larsson R, et al. Nickel based superalloy welding practices for industrial gas turbine applications. Sci Technol Weld Joining, 2004, 9(1): 13 DOI: 10.1179/136217104225017099
    [11]
    Lin Y C, Chen X M, Wen D X, et al. A physically-based constitutive model for a typical nickel-based superalloy. Comput Mater Sci, 2014, 83: 282 DOI: 10.1016/j.commatsci.2013.11.003
    [12]
    Chen X M, Lin Y C, Wen D X, et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater Des, 2014, 57: 568 DOI: 10.1016/j.matdes.2013.12.072
    [13]
    Changn S H, Chang P Y. Investigation into the sintered behavior and properties of nanostructured WC−Co−Ni−Fe hard metal alloys. Mater Sci Eng A, 2014, 606: 150 DOI: 10.1016/j.msea.2014.03.096
    [14]
    Lin N, Wu C H, He Y H, et al. Effect of Mo and Co additions on the microstructure and properties of WC−TiC−Ni cemented carbides. Int J Refract Met Hard Mater, 2012, 30(1): 107 DOI: 10.1016/j.ijrmhm.2011.07.011
    [15]
    Rajabi A, Ghazali M J, Syarif J, et al. Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders. Chem Eng J, 2014, 255: 445 DOI: 10.1016/j.cej.2014.06.078
    [16]
    株洲硬质合金集团有限公司. 钢结硬质合金. 北京: 冶金工业出版社, 1982

    Zhuzhou Cemented Carbide Group Co. Ltd. Steel Bonded Cemented Carbide. Beijing: Metallurgical Industry Press, 1982
    [17]
    Guo Z X, Xiong J, Yang M, et al. Effect of Mo2C on the microstructure and properties of WC−TiC−Ni cemented carbide. Int J Refract Met Hard Mater, 2008, 26(6): 601 DOI: 10.1016/j.ijrmhm.2008.01.007
  • Related Articles

    [1]M.C.Baran, A.H.Graham, A.B.Davala, R.J.Causton, C.Schade. A auperior sinter-hardenable material[J]. Powder Metallurgy Technology, 2016, 34(2): 141-148. DOI: 10.3969/j.issn.1001-3784.2016.02.012
    [2]Jia Jixiang, Liao Xiangwei, Li Degang, Guo Qingtao, Ni Chongyi, Peng Chunlin. Study on the Properties of Fe-Mo-Ni-Cu-C Sinter Hardening Steel[J]. Powder Metallurgy Technology, 2014, 32(6): 451-456.
    [3]Effect of Cooling Rates During Sinter-Hardening[J]. Powder Metallurgy Technology, 2014, 32(2): 144-152.
    [4]Properties and applications of high density sinter-hardening materials[J]. Powder Metallurgy Technology, 2014, 32(1): 68-73. DOI: 10.3969/j.issn.1001-3784.2014.01.013
    [5]Alloy development of sinter-hardenable compositions[J]. Powder Metallurgy Technology, 2011, 29(3): 232-235.
    [6]Bruce Lindsley, Thomas Murphy. Dimensional precision in sinter-hardening PM steels[J]. Powder Metallurgy Technology, 2009, 27(6): 468-470.
    [7]Development of a dual-phase precipitation-hardening PM stainless steel[J]. Powder Metallurgy Technology, 2009, 27(4): 305-312.
    [8]A review of current sinter-hardening technology[J]. Powder Metallurgy Technology, 2009, 27(2): 148-152.
    [9]Study on the effects of the power and raw material on nanodiamond synthesis by laser irradiation[J]. Powder Metallurgy Technology, 2007, 25(3): 203-208. DOI: 10.3321/j.issn:1001-3784.2007.03.010
    [10]Transfer case sprocket production through the sinter hardening process[J]. Powder Metallurgy Technology, 2003, 21(6): 327-333. DOI: 10.3321/j.issn:1001-3784.2003.06.002

Catalog

    Article Metrics

    Article views (632) PDF downloads (44) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return