AdvancedSearch
HU Ming, YANG Ying-jie, LI Pu-ming, YUAN Yong, ZHANG De-jin, YU Yong-liang, LI Song-lin. Effect of manganese source powders on microstructure and mechanical properties of Fe-Mn-C sintered steel[J]. Powder Metallurgy Technology, 2020, 38(6): 403-408. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110002
Citation: HU Ming, YANG Ying-jie, LI Pu-ming, YUAN Yong, ZHANG De-jin, YU Yong-liang, LI Song-lin. Effect of manganese source powders on microstructure and mechanical properties of Fe-Mn-C sintered steel[J]. Powder Metallurgy Technology, 2020, 38(6): 403-408. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110002

Effect of manganese source powders on microstructure and mechanical properties of Fe-Mn-C sintered steel

More Information
  • Corresponding author:

    LI Song-lin, E-mail: lisl@csu.edu.cn

  • Received Date: November 06, 2019
  • Using the electrolytic manganese powders and Fe-76%Mn powders (mass fraction) as the raw materials, the antioxidative nitrogen-manganese source powders (Mn-3%N, Mn-5%N, and FeMn-3%N, mass fraction) were prepared in the tube furnace with 70%N2 + 30%H2 gas (volume fraction) at 600 ℃, the effects of the manganese mass fraction and the type of manganese source powders on the microstructure and mechanical properties of the Fe-Mn-C sintered steels were investigated. In the results, the mechanical properties of the Fe-Mn-C sintered steels prepared by the nitrogen-manganese source powders are obviously better than those prepared by the electrolytic manganese powders. With the increase of the nitrogen mass fraction in the manganese source powders, the sintering expansion rate of the sintered steels decreases, and the strengthening of the Fe-Mn-C alloy is increased. The tensile strength of the Fe-2Mn-0.5C sintered steels prepared by Mn-5%N powders is 576 MPa, and the fracture elongation is 3.8%, which is improved by 29% and 123%, respectively, compared with those prepared by the electrolytic manganese powders. The number of pores in the sintered steels prepared by the nitrogen-manganese source powders decreases, the pearlite increases, and the lamellar spacing decreases.
  • [1]
    Šalak A, Selecká M, Bureš R. Manganese in ferrous powder metallurgy. Powder Metall Prog, 2001, 1(1): 41 http://www.researchgate.net/publication/267294771_Manganese_in_ferrous_powder_metallurgy/download
    [2]
    Dudrová E, Kabátová M, Bidulský R, et al. Industrial processing, microstructures and mechanical properties of Fe-(2-4)Mn(-0.85Mo)-(0.3-0.7)C sintered steels. Powder Metall, 2004, 47(2): 180 DOI: 10.1179/003258904225015518
    [3]
    Suciu C, Arghir G, Brandusan L, et al. Microstructure of the Fe-FeMn transition zone. Powder Metall Prog, 2011, 11(1-2): 153 http://smartsearch.nstl.gov.cn/paper_detail.html?id=768981387bc3474e745935de00f77262
    [4]
    Šalak A, Selecká M. Effect of manganese content and manganese carrier on properties of sintered and sintered hardened hybrid Fe-3Cr-0.5Mo-xMn-0.24C steel. Powder Metall, 2008, 51(4): 327 DOI: 10.1179/174329008X284976
    [5]
    陈荟竹. Fe-Mn-(Mo)-C粉末冶金低合金钢制备及力学性能研究[学位论文]. 长沙: 中南大学, 2015

    Chen H Z. Preparation and Mechanical Properties of Fe-Mn-(Mo)-C Powder Metallurgy Low Alloy Steel[Dissertation]. Changsha: Central South University, 2015
    [6]
    Chen H Z, Luo P, Yang Y J, et al. Effect of Mn addition and its nitridation on microstructure and properties of sintered Fe-1Mn-0.5C low-alloy steel. J Mater Eng Perform, 2017, 26(9): 4481 DOI: 10.1007/s11665-017-2677-8
    [7]
    Karlsson H, Nyborg L, Berg S. Surface chemical analysis of prealloyed water atomized steel powder. Powder Metall, 2005, 48(1): 51 DOI: 10.1179/0032589005X37675
    [8]
    Hryha E, Gierl C, Nyborg L, et al. Surface composition of the steel powders pre-alloyed with manganese. Appl Surf Sci, 2010, 256(12): 3946 DOI: 10.1016/j.apsusc.2010.01.055
    [9]
    Morioka Y. Recent advances in production of steel powders for high strength PM parts. Met Powder Rep, 1990, 45(3): 181 DOI: 10.1016/S0026-0657(10)80085-2
    [10]
    周国理, 洪恒泉, 何凤鸣, 等. 硅锰母合金对烧结钢性能和组织的影响. 粉末冶金技术, 1996, 14(4): 282 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ604.007.htm

    Zhou G L, Hong H Q, He F M, et al. Effect of silicon-manganese master alloy on properties and microstructure of sintered steel. Powder Metall Technol, 1996, 14(4): 282 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ604.007.htm
    [11]
    Šalak A, Selecká M. Manganese in Powder Metallurgy Steels. Cambridge: Cambridge International Science Publishing, 2012
    [12]
    Šalak A, Selecká M, Danninger H. Machinability of Powder Metallurgy Steels. Cambridge: Cambridge International Science Publishing, 2005
    [13]
    刘东, 向红亮, 胡育瑞. N含量对铸造CE8MN双相不锈钢组织和性能影响. 铸造技术, 2015(6): 1342 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201506004.htm

    Liu D, Xiang H L, Hu Y R. Effect of N content on microstructure and properties of CE8MN cast duplex stainless steel. Foundry Technol, 2015(6): 1342 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201506004.htm
    [14]
    Sun G X, Zhang Y, Sun S C, et al. Plastic flow behavior and its relationship to tensile mechanical properties of high nitrogen nickel-free austenitic stainless steel. Mater Sci Eng A, 2016, 662(5): 432 http://smartsearch.nstl.gov.cn/paper_detail.html?id=8a4e3925e0987e572b055d2129a5c2e5
    [15]
    James W B, Lindsiey B, Narasimhan K S. PM manganese steels for powder metallurgy parts. Powder Metall Prog, 2012, 12(1): 3 DOI: 10.1007/978-1-907343-75-9
  • Related Articles

    [1]DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013
    [2]YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009
    [3]Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011
    [4]Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116.
    [5]Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272.
    [6]Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219.
    [7]Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43.
    [8]Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171.
    [9]Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15.
    [10]Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15.

Catalog

    Article Metrics

    Article views (326) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return