Citation: | HU Ming, YANG Ying-jie, LI Pu-ming, YUAN Yong, ZHANG De-jin, YU Yong-liang, LI Song-lin. Effect of manganese source powders on microstructure and mechanical properties of Fe-Mn-C sintered steel[J]. Powder Metallurgy Technology, 2020, 38(6): 403-408. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110002 |
[1] |
Šalak A, Selecká M, Bureš R. Manganese in ferrous powder metallurgy. Powder Metall Prog, 2001, 1(1): 41 http://www.researchgate.net/publication/267294771_Manganese_in_ferrous_powder_metallurgy/download
|
[2] |
Dudrová E, Kabátová M, Bidulský R, et al. Industrial processing, microstructures and mechanical properties of Fe-(2-4)Mn(-0.85Mo)-(0.3-0.7)C sintered steels. Powder Metall, 2004, 47(2): 180 DOI: 10.1179/003258904225015518
|
[3] |
Suciu C, Arghir G, Brandusan L, et al. Microstructure of the Fe-FeMn transition zone. Powder Metall Prog, 2011, 11(1-2): 153 http://smartsearch.nstl.gov.cn/paper_detail.html?id=768981387bc3474e745935de00f77262
|
[4] |
Šalak A, Selecká M. Effect of manganese content and manganese carrier on properties of sintered and sintered hardened hybrid Fe-3Cr-0.5Mo-xMn-0.24C steel. Powder Metall, 2008, 51(4): 327 DOI: 10.1179/174329008X284976
|
[5] |
陈荟竹. Fe-Mn-(Mo)-C粉末冶金低合金钢制备及力学性能研究[学位论文]. 长沙: 中南大学, 2015
Chen H Z. Preparation and Mechanical Properties of Fe-Mn-(Mo)-C Powder Metallurgy Low Alloy Steel[Dissertation]. Changsha: Central South University, 2015
|
[6] |
Chen H Z, Luo P, Yang Y J, et al. Effect of Mn addition and its nitridation on microstructure and properties of sintered Fe-1Mn-0.5C low-alloy steel. J Mater Eng Perform, 2017, 26(9): 4481 DOI: 10.1007/s11665-017-2677-8
|
[7] |
Karlsson H, Nyborg L, Berg S. Surface chemical analysis of prealloyed water atomized steel powder. Powder Metall, 2005, 48(1): 51 DOI: 10.1179/0032589005X37675
|
[8] |
Hryha E, Gierl C, Nyborg L, et al. Surface composition of the steel powders pre-alloyed with manganese. Appl Surf Sci, 2010, 256(12): 3946 DOI: 10.1016/j.apsusc.2010.01.055
|
[9] |
Morioka Y. Recent advances in production of steel powders for high strength PM parts. Met Powder Rep, 1990, 45(3): 181 DOI: 10.1016/S0026-0657(10)80085-2
|
[10] |
周国理, 洪恒泉, 何凤鸣, 等. 硅锰母合金对烧结钢性能和组织的影响. 粉末冶金技术, 1996, 14(4): 282 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ604.007.htm
Zhou G L, Hong H Q, He F M, et al. Effect of silicon-manganese master alloy on properties and microstructure of sintered steel. Powder Metall Technol, 1996, 14(4): 282 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ604.007.htm
|
[11] |
Šalak A, Selecká M. Manganese in Powder Metallurgy Steels. Cambridge: Cambridge International Science Publishing, 2012
|
[12] |
Šalak A, Selecká M, Danninger H. Machinability of Powder Metallurgy Steels. Cambridge: Cambridge International Science Publishing, 2005
|
[13] |
刘东, 向红亮, 胡育瑞. N含量对铸造CE8MN双相不锈钢组织和性能影响. 铸造技术, 2015(6): 1342 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201506004.htm
Liu D, Xiang H L, Hu Y R. Effect of N content on microstructure and properties of CE8MN cast duplex stainless steel. Foundry Technol, 2015(6): 1342 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201506004.htm
|
[14] |
Sun G X, Zhang Y, Sun S C, et al. Plastic flow behavior and its relationship to tensile mechanical properties of high nitrogen nickel-free austenitic stainless steel. Mater Sci Eng A, 2016, 662(5): 432 http://smartsearch.nstl.gov.cn/paper_detail.html?id=8a4e3925e0987e572b055d2129a5c2e5
|
[15] |
James W B, Lindsiey B, Narasimhan K S. PM manganese steels for powder metallurgy parts. Powder Metall Prog, 2012, 12(1): 3 DOI: 10.1007/978-1-907343-75-9
|
[1] | DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013 |
[2] | YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009 |
[3] | Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011 |
[4] | Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116. |
[5] | Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272. |
[6] | Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219. |
[7] | Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43. |
[8] | Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171. |
[9] | Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15. |
[10] | Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15. |