AdvancedSearch
WU Kai-qi, LU Lin, WU Weng-heng, ZHANG Liang, WANG Tao, YANG Qi-yun, NI Xiao-qing, XU Jiong-kai, JIANG Ding-ding. Influence of nozzle gas inlets on properties of GTD222 superalloy powders for additive manufacturing[J]. Powder Metallurgy Technology, 2021, 39(2): 107-112. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110012
Citation: WU Kai-qi, LU Lin, WU Weng-heng, ZHANG Liang, WANG Tao, YANG Qi-yun, NI Xiao-qing, XU Jiong-kai, JIANG Ding-ding. Influence of nozzle gas inlets on properties of GTD222 superalloy powders for additive manufacturing[J]. Powder Metallurgy Technology, 2021, 39(2): 107-112. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110012

Influence of nozzle gas inlets on properties of GTD222 superalloy powders for additive manufacturing

More Information
  • Corresponding author:

    LU Lin, E-mail: lulinws@163.com

  • Received Date: November 26, 2019
  • Available Online: March 26, 2021
  • The GTD222 superalloy powders for the additive manufacturing were prepared by the vacuum inert gas atomization (VIGA) with the close-coupled nozzle system in this paper. The effects of nozzle gas inlets on the chemical composition, particle size distribution, sphericility, fluidity, loose packed density, and surface morphology of the GTD222 superalloy powders were studied. The results show that, using the nozzle with an “outer straight inner tangent” structure enhances the suction effect of the nozzle and improves the stability of the closed-coupled gas atomization process. In addition, the tangent inlet system enhances the gas shear effect, therefore improves the yield of the fine powders (15~53 μm). The optimized process parameters are found in the conditions of 200 ℃ superheat and 3 MPa atomization pressure. The oxygen mass fraction of the powders prepared in the optimized conditions is 0.02%, the medium diameter is 57.98 μm, the degree of sphericility is 0.77, the fluidity is 26.15 g/(50 s), and the loose packed density is 4.63 g/cm3, which meet the requirements of the metal additive manufacturing technology.
  • [1]
    张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术. 材料工程, 2016, 44(2): 122 DOI: 10.11868/j.issn.1001-4381.2016.02.019

    Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technology of 3D printing. J Mater Eng, 2016, 44(2): 122 DOI: 10.11868/j.issn.1001-4381.2016.02.019
    [2]
    Sachs E, Cima M, Cornie J, et al. Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP Ann Manuf Technol, 1990, 39(1): 201 DOI: 10.1016/S0007-8506(07)61035-X
    [3]
    伍咏晖, 李爱平, 张曙. 三维打印成形技术的新进展. 机械制造, 2005, 43(12): 62 DOI: 10.3969/j.issn.1000-4998.2005.12.022

    Wu Y H, Li A P, Zhang S. New development of 3D printing forming technology. Machinery, 2005, 43(12): 62 DOI: 10.3969/j.issn.1000-4998.2005.12.022
    [4]
    Lam C X F, Mo X M, Teoh S H, et al. Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng, 2002, 20(1-2): 49 DOI: 10.1016/S0928-4931(02)00012-7
    [5]
    刘光富, 张曙. 快速成形制造技术的发展和展望. 制造业自动化, 2002, 24(6): 1 DOI: 10.3969/j.issn.1009-0134.2002.06.001

    Liu G F, Zhang S. Development and expectation of rapid prototyping manufacturing technology. Manuf Autom, 2002, 24(6): 1 DOI: 10.3969/j.issn.1009-0134.2002.06.001
    [6]
    颜永年, 张人佶, 林峰. 激光快速成形技术的新进展. 新技术新工节, 2006(9): 7

    Yan Y N, Zhang R J, Lin F. New development of laser rapid prototyping technique. New Technol New Process, 2006(9): 7
    [7]
    王建军. 中国雾化制粉技术现状简介. 粉末冶金工业, 2016, 26(5): 1

    Wang J J. Brief introduction to the present situation of atomization powder technology in China. Powder Metall Ind, 2016, 26(5): 1
    [8]
    王博亚, 卢林, 吴文恒, 等. 气雾化制粉技术研究进展. 粉末冶金工业, 2019, 29(5): 74

    Wang B Y, Lu L, Wu W H, et al. The research progress of powder preparation technology by gas atomization. Powder Metall Ind, 2019, 29(5): 74
    [9]
    陈莹莹, 肖志瑜, 李上奎, 等. 3D打印用金属粉末的制备技术及其研究进展. 粉末冶金工业, 2018, 28(4): 56

    Chen Y Y, Xiao Z Y, Li S K, et al. Research progress on the preparation methods of metal powder for 3D printing. Powder Metall Ind, 2018, 28(4): 56
    [10]
    陈欣. 紧耦合气雾化流场结构和雾化机理研究[学位论文]. 湖南: 中南大学, 2007

    Chen X. Study on Flow Field Structure of Close-Coupled Gas Atomization and Atomization Mechanism [Dissertation]. Hunan: Central South University, 2007
    [11]
    全国有色金属标准化技术委员会. GB/T 5314-2011粉末冶金用粉末取样方法. 北京: 中国标准出版社, 2012

    National Technical Committee for Standardization of Nonferrous Metals. GB/T 5314-2011 Powders for Powder Metallurgical Purposes-Sampling. Beijing: China Standard Press, 2012
    [12]
    全国筛网筛分和颗粒分检方法标准化技术委员会. GB/T 19077.1-2008粒度分析激光衍射法 第1部分: 通则. 北京: 中国标准出版社, 2008

    National Technical Committee for Standardization of Sieve Screening and Particle Inspection Methods. GB/T 19077.1-2008 Particle Size AnalysisLaser Diffraction MethodsPart 1: General Principles. Beijing: China Standard Press, 2008
    [13]
    全国有色金属标准化技术委员会. GB/T 1482-2010金属粉末 流动性的测定 标准漏斗法(霍尔流速计). 北京: 中国标准出版社, 2011

    National Technical Committee for Standardization of Nonferrous Metals. GB/T 1482-2010 Metallic Powders-Determination of Flow Time by Means of a Calibrated Funnel (Hall Flowmeter). Beijing: China Standard Press, 2010
    [14]
    全国有色金属标准化技术委员会. GB/T 1479.1-2011金属粉末 松装密度的测定 第1部分: 漏斗法. 北京: 中国标准出版社, 2012

    National Technical Committee for Standardization of Nonferrous Metals. GB/T 1479.1-2011 Metallic Powders-Determination of Apparent Density-Part 1: Funnal Method. Beijing: China Standard Press, 2012
    [15]
    吴文恒, 吴凯琦, 肖逸凡, 等. 气雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001

    Wu W H, Wu K Q, Xiao Y F, et al. Effect of atomization pressure on the properties of 316L stainless steel powders used in additive manufacturing. Powder Metall Technol, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (681) PDF downloads (85) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return