Citation: | ZHANG Su-qing, SU Qian, YU Huan, XIA Jin-huan, MA Bai-chang, ZHUANG Hai-hua, ZHOU Ji-xue. Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 512-519. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120003 |
[1] |
Wu Z, Ahmad R, Yin B, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science, 2018, 359(6374): 447 DOI: 10.1126/science.aap8716
|
[2] |
Zhang W, Mao J, Li S, et al. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc, 2017, 139(9): 3316 DOI: 10.1021/jacs.6b12185
|
[3] |
Pan H, Qin G, Huang Y, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater, 2018, 149: 350 DOI: 10.1016/j.actamat.2018.03.002
|
[4] |
Suh B, Shim M, Shin K S, et al. Current issues in magnesium sheet alloys: Where do we go from here? Scr Mater, 2014, 84-85: 1
|
[5] |
Mordike B L, Ebert T. Magnesium: properties-applications-potential. Mater Sci Eng A, 2001, 302(1): 37 DOI: 10.1016/S0921-5093(00)01351-4
|
[6] |
Wang Y, Choo H. Influence of texture on Hall-Petch relationships in an Mg alloy. Acta Mater, 2014, 81: 83 DOI: 10.1016/j.actamat.2014.08.023
|
[7] |
梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al‒7Si‒0.3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373
Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocrystalline Al–7Si–0.3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373
|
[8] |
Sun W T, Qiao X G, Zheng M Y, et al. Altered ageing behaviour of a nanostructured Mg‒8.2Gd‒3.8Y‒1.0Zn‒0.4Zr alloy processed by high pressure torsion. Acta Mater, 2018, 151: 260
|
[9] |
Wang X, Wang H, Hu L X, et al. Nanocrystalline Mg and Mg alloy powders by hydriding-dehydriding processing. Trans Nonferrous Met Soc China, 2010, 20(7): 1326 DOI: 10.1016/S1003-6326(09)60299-5
|
[10] |
Yu H, Sun Y, Hu L X, et al. Microstructure and properties of mechanically milled AZ61 powders dispersed with submicron/nanometer Ti particulates. Mater Charact, 2017, 127: 272 DOI: 10.1016/j.matchar.2017.03.017
|
[11] |
Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 2001, 46(1-2): 1 DOI: 10.1016/S0079-6425(99)00010-9
|
[12] |
Medina J, Pérez P, Garcés G, et al. High-strength Mg‒6Zn‒1Y‒1Ca (wt%) alloy containing quasicrystalline I-phase processed by a powder metallurgy route. Mater Sci Eng A, 2018, 715: 92 DOI: 10.1016/j.msea.2017.12.111
|
[13] |
Chen Q, Meng Y, Yi Y, et al. Microstructure and mechanical properties of cup-shaped parts of 15% SiCp reinforced AZ91 magnesium matrix composite processed by thixoforging. J Alloys Compd, 2019, 774: 93 DOI: 10.1016/j.jallcom.2018.09.345
|
[14] |
Penther D, Ghasemi A, Riedel R, et al. Effect of SiC nanoparticles on manufacturing process, microstructure and hardness of Mg‒SiC nanocomposites produced by mechanical milling and hot extrusion. Mater Sci Eng A, 2018, 738: 264 DOI: 10.1016/j.msea.2018.09.106
|
[15] |
Chen L, Xu J, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature, 2015, 528(7583): 539 DOI: 10.1038/nature16445
|
[16] |
Nikmardan S, Pouyafar V. Fabrication of AZ91D/SiCp composites by mechanical milling of magnesium alloy chips and spark plasma sintering in a semi-solid regime. J Asian Ceram Soc, 2019, 7(2): 154 DOI: 10.1080/21870764.2019.1595928
|
[17] |
Farzami M, Farahani M, Akbari D, et al. Friction stir weld of AZ91 magnesium alloy with and without nano-SiC particle. JOM, 2019, 71(11): 4171 DOI: 10.1007/s11837-019-03764-6
|
[18] |
Yi Y, Meng Y, Li D, et al. Partial melting behavior and thixoforming properties of extruded magnesium alloy AZ91 with and without addition of SiC particles with a volume fraction of 15%. J Mater Sci Technol, 2018, 34(7): 1149 DOI: 10.1016/j.jmst.2017.11.044
|
[19] |
张桂银, 查五生, 陈秀丽, 等. 机械球磨技术在材料制备中的应用. 粉末冶金技术, 2018, 36(4): 315
Zhang G Y, Zha W S, Chen X L, et al. Application of mechanical ball-milling technology in material preparation. Powder Metall Technol, 2018, 36(4): 315
|
[20] |
吴超, 孙爱芝, 刘永生, 等. 纳米SiC颗粒增强铝镁复合材料的制备与性能研究. 粉末冶金技术, 2017, 35(3): 182
Wu C, Sun A Z, Liu Y S, et al. Preparation and properties of nano-SiC particle reinforced Al–Mg composite. Powder Metall Technol, 2017, 35(3): 182
|
[21] |
Ramkumar T, Selvakumar M, Vasanthsankar R, et al. Rietveld refinement of powder X-ray diffraction, microstructural and mechanical studies of magnesium matrix composites processed by high energy ball milling. J Magn Alloy, 2018, 6(4): 390 DOI: 10.1016/j.jma.2018.08.002
|
[22] |
Kamrani S, Hübler D, Ghasemi A, et al. Enhanced strength and ductility in magnesium matrix composites reinforced by a high volume fraction of nano- and submicron-sized SiC particles produced by mechanical milling and hot extrusion. Materials, 2019, 12(20): 3445 DOI: 10.3390/ma12203445
|
[23] |
Burton A W, Ong K, Rea T, et al. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater, 2009, 117(1-2): 75 DOI: 10.1016/j.micromeso.2008.06.010
|
[24] |
Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater Charact, 2007, 58(10): 883 DOI: 10.1016/j.matchar.2006.09.002
|
[25] |
Williamson G K, Hall W H. X-ray line broadening from field aluminum and wolfram. Acta Metall, 1953, 1(1): 22 DOI: 10.1016/0001-6160(53)90006-6
|
[26] |
Chen L, Peng J, Xu J, et al. Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr Mater, 2013, 69(8): 634 DOI: 10.1016/j.scriptamat.2013.07.016
|
[27] |
Hassan S F, Gupta M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater Sci Eng A, 2005, 392(1-2): 163 DOI: 10.1016/j.msea.2004.09.047
|
[28] |
Feng J, Sun H, Li X, et al. Microstructures and mechanical properties of the ultrafine-grained Mg‒3Al‒Zn alloys fabricated by powder metallurgy. Adv Powder Technol, 2016, 27(2): 550 DOI: 10.1016/j.apt.2016.02.008
|
[29] |
Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness. Mater Sci Eng A, 2011, 529: 62 DOI: 10.1016/j.msea.2011.08.061
|
1. |
鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .
![]() |