AdvancedSearch
ZHANG Su-qing, SU Qian, YU Huan, XIA Jin-huan, MA Bai-chang, ZHUANG Hai-hua, ZHOU Ji-xue. Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 512-519. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120003
Citation: ZHANG Su-qing, SU Qian, YU Huan, XIA Jin-huan, MA Bai-chang, ZHUANG Hai-hua, ZHOU Ji-xue. Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 512-519. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120003

Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys

More Information
  • Corresponding author:

    SU Qian, E-mail: susan8401@163.com

  • Received Date: November 30, 2019
  • Available Online: October 31, 2021
  • The SiC particle (SiCp) reinforced magnesium matrix composite powders (AZ91‒xSiCp, x=5%, 10%, 15%, volume fraction) were synthesized by mechanical milling. After the mechanical milling, the grain size of the magnesium matrix was refined to nanoscale, and the ultrafine SiC particles were dispersed into the magnesium matrix uniformly. The effect of SiCp on the microstructure of the milled nanocrystalline AZ91 magnesium alloys was analyzed. In the results, SiCp could accelerate the refining of magnesium matrix. Meanwhile, both the dissolving of Al element into the magnesium matrix and the refining of SiCp are inhibited due to the increasing of SiCp. The hardness of AZ91‒xSiCp composites (x=5%, 10%, 15%) is HV 166, HV 175, and HV 185, respectively. The contribution ratio of grain boundary strengthening, Orowan strengthening, solid solution strengthening, and load-bearing strengthening to the milled AZ91‒xSiCp composites is about 86.9%, 7.4%, 1.8% and 3.8%, respectively.
  • [1]
    Wu Z, Ahmad R, Yin B, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science, 2018, 359(6374): 447 DOI: 10.1126/science.aap8716
    [2]
    Zhang W, Mao J, Li S, et al. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc, 2017, 139(9): 3316 DOI: 10.1021/jacs.6b12185
    [3]
    Pan H, Qin G, Huang Y, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater, 2018, 149: 350 DOI: 10.1016/j.actamat.2018.03.002
    [4]
    Suh B, Shim M, Shin K S, et al. Current issues in magnesium sheet alloys: Where do we go from here? Scr Mater, 2014, 84-85: 1
    [5]
    Mordike B L, Ebert T. Magnesium: properties-applications-potential. Mater Sci Eng A, 2001, 302(1): 37 DOI: 10.1016/S0921-5093(00)01351-4
    [6]
    Wang Y, Choo H. Influence of texture on Hall-Petch relationships in an Mg alloy. Acta Mater, 2014, 81: 83 DOI: 10.1016/j.actamat.2014.08.023
    [7]
    梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al‒7Si‒0.3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373

    Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocrystalline Al–7Si–0.3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373
    [8]
    Sun W T, Qiao X G, Zheng M Y, et al. Altered ageing behaviour of a nanostructured Mg‒8.2Gd‒3.8Y‒1.0Zn‒0.4Zr alloy processed by high pressure torsion. Acta Mater, 2018, 151: 260
    [9]
    Wang X, Wang H, Hu L X, et al. Nanocrystalline Mg and Mg alloy powders by hydriding-dehydriding processing. Trans Nonferrous Met Soc China, 2010, 20(7): 1326 DOI: 10.1016/S1003-6326(09)60299-5
    [10]
    Yu H, Sun Y, Hu L X, et al. Microstructure and properties of mechanically milled AZ61 powders dispersed with submicron/nanometer Ti particulates. Mater Charact, 2017, 127: 272 DOI: 10.1016/j.matchar.2017.03.017
    [11]
    Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 2001, 46(1-2): 1 DOI: 10.1016/S0079-6425(99)00010-9
    [12]
    Medina J, Pérez P, Garcés G, et al. High-strength Mg‒6Zn‒1Y‒1Ca (wt%) alloy containing quasicrystalline I-phase processed by a powder metallurgy route. Mater Sci Eng A, 2018, 715: 92 DOI: 10.1016/j.msea.2017.12.111
    [13]
    Chen Q, Meng Y, Yi Y, et al. Microstructure and mechanical properties of cup-shaped parts of 15% SiCp reinforced AZ91 magnesium matrix composite processed by thixoforging. J Alloys Compd, 2019, 774: 93 DOI: 10.1016/j.jallcom.2018.09.345
    [14]
    Penther D, Ghasemi A, Riedel R, et al. Effect of SiC nanoparticles on manufacturing process, microstructure and hardness of Mg‒SiC nanocomposites produced by mechanical milling and hot extrusion. Mater Sci Eng A, 2018, 738: 264 DOI: 10.1016/j.msea.2018.09.106
    [15]
    Chen L, Xu J, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature, 2015, 528(7583): 539 DOI: 10.1038/nature16445
    [16]
    Nikmardan S, Pouyafar V. Fabrication of AZ91D/SiCp composites by mechanical milling of magnesium alloy chips and spark plasma sintering in a semi-solid regime. J Asian Ceram Soc, 2019, 7(2): 154 DOI: 10.1080/21870764.2019.1595928
    [17]
    Farzami M, Farahani M, Akbari D, et al. Friction stir weld of AZ91 magnesium alloy with and without nano-SiC particle. JOM, 2019, 71(11): 4171 DOI: 10.1007/s11837-019-03764-6
    [18]
    Yi Y, Meng Y, Li D, et al. Partial melting behavior and thixoforming properties of extruded magnesium alloy AZ91 with and without addition of SiC particles with a volume fraction of 15%. J Mater Sci Technol, 2018, 34(7): 1149 DOI: 10.1016/j.jmst.2017.11.044
    [19]
    张桂银, 查五生, 陈秀丽, 等. 机械球磨技术在材料制备中的应用. 粉末冶金技术, 2018, 36(4): 315

    Zhang G Y, Zha W S, Chen X L, et al. Application of mechanical ball-milling technology in material preparation. Powder Metall Technol, 2018, 36(4): 315
    [20]
    吴超, 孙爱芝, 刘永生, 等. 纳米SiC颗粒增强铝镁复合材料的制备与性能研究. 粉末冶金技术, 2017, 35(3): 182

    Wu C, Sun A Z, Liu Y S, et al. Preparation and properties of nano-SiC particle reinforced Al–Mg composite. Powder Metall Technol, 2017, 35(3): 182
    [21]
    Ramkumar T, Selvakumar M, Vasanthsankar R, et al. Rietveld refinement of powder X-ray diffraction, microstructural and mechanical studies of magnesium matrix composites processed by high energy ball milling. J Magn Alloy, 2018, 6(4): 390 DOI: 10.1016/j.jma.2018.08.002
    [22]
    Kamrani S, Hübler D, Ghasemi A, et al. Enhanced strength and ductility in magnesium matrix composites reinforced by a high volume fraction of nano- and submicron-sized SiC particles produced by mechanical milling and hot extrusion. Materials, 2019, 12(20): 3445 DOI: 10.3390/ma12203445
    [23]
    Burton A W, Ong K, Rea T, et al. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater, 2009, 117(1-2): 75 DOI: 10.1016/j.micromeso.2008.06.010
    [24]
    Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater Charact, 2007, 58(10): 883 DOI: 10.1016/j.matchar.2006.09.002
    [25]
    Williamson G K, Hall W H. X-ray line broadening from field aluminum and wolfram. Acta Metall, 1953, 1(1): 22 DOI: 10.1016/0001-6160(53)90006-6
    [26]
    Chen L, Peng J, Xu J, et al. Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr Mater, 2013, 69(8): 634 DOI: 10.1016/j.scriptamat.2013.07.016
    [27]
    Hassan S F, Gupta M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater Sci Eng A, 2005, 392(1-2): 163 DOI: 10.1016/j.msea.2004.09.047
    [28]
    Feng J, Sun H, Li X, et al. Microstructures and mechanical properties of the ultrafine-grained Mg‒3Al‒Zn alloys fabricated by powder metallurgy. Adv Powder Technol, 2016, 27(2): 550 DOI: 10.1016/j.apt.2016.02.008
    [29]
    Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness. Mater Sci Eng A, 2011, 529: 62 DOI: 10.1016/j.msea.2011.08.061
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [5]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [6]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(1)

    1. 鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (331) PDF downloads (38) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return