AdvancedSearch
CAO Yang, ZHANG Peng-lin, NIU Xian-ming, HU Chun-Lian, CHEN Kai-wang. Research on thermal barrier and thermal shock resistance of NiCr−mullite composite ceramic coating[J]. Powder Metallurgy Technology, 2021, 39(2): 135-140. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120004
Citation: CAO Yang, ZHANG Peng-lin, NIU Xian-ming, HU Chun-Lian, CHEN Kai-wang. Research on thermal barrier and thermal shock resistance of NiCr−mullite composite ceramic coating[J]. Powder Metallurgy Technology, 2021, 39(2): 135-140. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120004

Research on thermal barrier and thermal shock resistance of NiCr−mullite composite ceramic coating

More Information
  • Corresponding author:

    CAO Yang, E-mail: 381820242@qq.com

  • Received Date: December 08, 2019
  • Available Online: March 26, 2021
  • Five groups of the NiCr−mullite composite powders in various proportions were mixed by ball milling. The NiCr−mullite composite ceramic coatings on the 45 Steel were prepared by the supersonic plasma spraying. The thermal conductivity and thermal shock resistance of the coatings was tested. The microstructures of the coating surface and cross section were observed by the scanning electron microscope (SEM), the chemical composition in the characteristic area of coatings was analyzed by the energy disperse spectroscopy (EDS), and the phase constitution of the coatings was analyzed by X-ray diffraction (XRD). The results show that, the NiCr solid solution is the matrix of the NiCr−mullite composite coatings, which is uniformly distributed by the mullite particles. The diffusion phases are formed between the mullite particles and the NiCr matrix to improve the wettability, and the mullite particles can be coated firmly by the diffusion phases and the NiCr matrix. Meanwhile, the NiCr matrix can be reinforced by the mullite particles. The strength toughness and the thermal shock resistance of the coatings increase, and the thermal conductivity reduces with the increase of the mullite volume fraction from 38% to 75%.
  • [1]
    郭敬娜. 红柱石、蓝晶石、硅线石对莫来石-刚玉材料性能的影响[学位论文]. 武汉: 武汉科技大学, 2004

    Guo J N. Effects of Andalusite, Bluestar and Siliconite on Properties of Mullite-Corundum Materials [Dissertation]. Wuhan: University of Science and Technology Wuhan, 2004
    [2]
    陈冬, 陈南春. 莫来石的研究进展. 矿产与地质, 2004(1): 55

    Chen D, Chen N C. Research development of mullite. Min Resour Geol, 2004(1): 55
    [3]
    安宇龙, 陈建敏, 刘光, 等. 天然红柱石莫来石化后热喷涂粉末的制备. 材料科学与工艺, 2011, 19(4): 107 DOI: 10.11951/j.issn.1005-0299.20110422

    An Y L, Chen J M, Liu G. Preparation of thermal spray powders using mullitized natural andalusite. Materi Sci Technol, 2011, 19(4): 107 DOI: 10.11951/j.issn.1005-0299.20110422
    [4]
    Skinner B J, Clark S P, Appleman D E. Molar volumes and thermal expansions of andalusite, kyanite, and sillimanite. Am J Sci, 1961, 259(9): 651
    [5]
    Pannhorst W, Schneider H. The high-temperature transformation of andalusite (Al2SiO5) into 3/2-mullite (3Al2O32SiO2) and vitreous silica (SiO2). Mineral Mag, 1978, 42(322): 195 DOI: 10.1180/minmag.1978.042.322.05
    [6]
    乔新义, 傅斌友, 汪瑞军. 内送粉等离子喷涂枪的研究与应用现状. 热喷涂技术, 2013, 5(1): 1

    Qiao X Y, Fu B Y, Wang R J. Research and application status of atmospheric plasma spray tporch in internal feedstock mode. Therm Spray Technol, 2013, 5(1): 1
    [7]
    Ronald W S, Richard K. Thermal spraying I: Powder consolidation—From coating to forming. JOM, 1995, 47(8): 32 DOI: 10.1007/BF03221456
    [8]
    Sobolev V V, Guilemany J M. Dynamic processes during high velocity oxyfuel spraying. Int Mater Rev, 1996, 41(1): 13
    [9]
    Schwetzke R, Kreye H. Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems. J Therm Spray Technol, 1999, 8(3): 433 DOI: 10.1361/105996399770350395
    [10]
    Kamnis S, Gu S. Numerical modelling of propane combustion in a high velocity oxygen–fuel thermal spray gun. Chem Eng Process, 2006, 45(4): 246 DOI: 10.1016/j.cep.2005.06.011
    [11]
    栗卓新, 祝弘滨, 李辉, 等. 热喷涂金属陶瓷复合涂层研究进展. 材料工程, 2012(5): 97

    Li Z X, Zhu H B, Li H, et al. Progress of thermal spray cermet coatings. J Mater Eng, 2012(5): 97
    [12]
    马东林, 贺毅, 王兰, 等. 等离子喷涂氧化铝涂层的热震性能及微观组织特征. 热加工工艺, 2011(4): 33

    Ma D L, He Y, Wang L, et al. Thermal shock resistance and microstructure character of alumina coatings fabricated plasma spraying. Hot Working Technol, 2011(4): 33
    [13]
    吕艳红, 张启富. 新型热障涂层研究现状及发展趋势. 粉末冶金工业, 2015, 25(1): 8

    Lü Y H, Zhang Q F. Current research status and development trend of advanced thermal barrier coatings. Powder Metall Ind, 2015, 25(1): 8
    [14]
    李其连, 刘怀菲. 等离子喷涂Sc2O3–Y2O3–ZrO2热障涂层组织结构和性能研究. 热喷涂技术, 2016, 8(1): 17

    Li Q L, Liu H F. Microstructure and properties of plasma sprayed Sc2O3–Y2O3–ZrO2 TBCs. Therm Spray Technol, 2016, 8(1): 17
    [15]
    徐慧, 杨杰. 瞬态热带法和瞬态平面法测量材料热传导系数. 测控技术, 2004(11): 71

    Xu H, Yang J. Measurement of material’ s thermal conductivity coefficient with THS and TPS. Meas Control Technol, 2004(11): 71
    [16]
    工程材料手册编辑委员会. 工程材料实用手册(第2版)第二卷. 北京: 中国标准出版社, 2002

    Engineering Materials Handbook Editorial Board. Practical Handbook of Engineering Materials (2nd Ed) Vol 2. Beijing: China Standard Press, 2002
    [17]
    Shin D I, Gitzhofer F, Moreau C. Properties of Induction plasma sprayed iron based nanostructured alloy coatings for metal based thermal barrier coatings. J Therm Spray Technol, 2007, 16(1): 118 DOI: 10.1007/s11666-006-9003-6
    [18]
    姜波, 周正, 姚海华, 等. Cr含量对FeCrB系涂层热导率及耐磨性的影响. 热喷涂技术, 2016, 8(1): 72

    Jiang B, Zhou Z, Yao H H, et al. Effect of Cr content on thermal conductivity and wear resistance of FeCrB coating. Therm Spray Technol, 2016, 8(1): 72
  • Related Articles

    [1]SHU chen, XU Qiang, LIU Yi-bo, YANG Zhiwei, KOU Shengzhong, CAO Rui. Investigation on microstructure and performance of sintered matrix and diamond saw blades welded by laser under different transition layer component[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110005
    [2]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [3]XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenlu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology, 2024, 42(3): 320-330. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020003
    [4]LIU Yiran, LI Lei, LI Xiaodong. Effect of shot peening on surface mechanical properties of selective laser melting TC4 titanium alloy[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010008
    [5]LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Yu-yang, JIANG Qiu-tong, LIU Yuan. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding[J]. Powder Metallurgy Technology, 2022, 40(3): 245-250. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010001
    [6]CHEN Peng-qi, TAI Yun-xiao, CHENG Ji-gui. Study on the sintering properties of Mo–La2O3 nano-powders prepared by solution combustion method[J]. Powder Metallurgy Technology, 2021, 39(3): 203-208. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020009
    [7]LIANG Jia-miao, WANG Li-min, HE Wei, TANG Chao, WU Xi-mao, WANG Jun. Effect of milling time on microstructures and hardness of nanocrystalline Al-7Si-0.3Mg alloy powders[J]. Powder Metallurgy Technology, 2019, 37(5): 373-381,391. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.009
    [8]WANG Da-peng, MU Yun-chao, CHENG Xiao-zhe, ZHANG Wu-qi. Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
    [9]WANG Qing-xiang, WANG Jun-long. Study on the interdiffusion of W–Ti alloy and β phase stability[J]. Powder Metallurgy Technology, 2018, 36(1): 3-8. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
    [10]Guo Yang, Liu Zuming, Su Pengfei, Ma Mengmei, Duan Ranxi, Wang Shuai. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361-367. DOI: 10.3969/j.issn.1001-3784.2016.05.008

Catalog

    Article Metrics

    Article views (247) PDF downloads (26) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return