AdvancedSearch
LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
Citation: LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007

Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis

More Information
  • Corresponding author:

    ZHU Jian-feng, E-mail: zhujf@sust.edu.cn

  • Received Date: December 15, 2018
  • SiC/Al-18Si composites with different SiC content by mass were in-situ synthesized by cold pressing and vacuum sintering, using aluminium powders, silicon powders, and graphite powders as raw materials. The phase composition and microstructures of the aluminum matrix composites were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), and energy disperse spectroscope (EDS). The effect of SiC on the microstructure, flexural strength, and microhardness of the composites were analyzed, and the variation in mechanical properties of the composites was discussed. In the results, the matrix phase of the composites is Al phase and the second phases are Si and SiC phases. The fine SiC particles by in-situ synthesis with the size ranging from 0.2 to 2.8 μm can be dispersed in Al matrix, showing the multi-scale characteristics of micron and submicron. With the increase in SiC content by mass, the microhardness of SiC/Al-18Si composites increases; meanwhile, the average sizes of SiC particles increase from 0.81 to 1.13 μm, but the SiC particles are still uniformly distributed in Al matrix, making the microhardness of the SiC/Al-18Si composites much higher than that of Al-18Si. When the mass fraction of SiC is 30%, the microhardness of the SiC/Al-18Si composites is the highest (HV 134), which is 88% higher than that of Al-18Si.
  • [1]
    Grasso S, Saunders T, Porwal H, et al. Flash spark plasma sintering (FSPS) of α and β SiC. J Am Ceram Soc, 2016, 99(5): 1534 DOI: 10.1111/jace.14158
    [2]
    Buffiere J Y, Maire E, Verdu C, et al. Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography. Mater Sci Eng A, 1997, 234-236: 633 DOI: 10.1016/S0921-5093(97)00302-X
    [3]
    El-kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des, 2014, 54(2): 348 http://www.sciencedirect.com/science/article/pii/S0261306913007930
    [4]
    Iveković A, Novak S, Dražić G, et al. Current status and prospects of SiCf/SiC for fusion structural applications. J Eur Ceram Soc, 2013, 33(10): 1577 DOI: 10.1016/j.jeurceramsoc.2013.02.013
    [5]
    高红霞, 王华丽, 杨东. 单一纳米及纳/微米SiC混合颗粒增强铝基复合材料研究. 粉末冶金技术, 2016, 34(1): 11 DOI: 10.3969/j.issn.1001-3784.2016.01.002

    Gao H X, Wang H L, Yang D. Study on single nanoparticles and nano/micro SiC particles reinforced aluminum composites. Powder Metall Technol, 2016, 34(1): 11 DOI: 10.3969/j.issn.1001-3784.2016.01.002
    [6]
    Li S, Xiong D G, Liu M, et al. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceram Int, 2014, 40(5): 7539 DOI: 10.1016/j.ceramint.2013.12.105
    [7]
    Du Y H, Zhang P, Wang Y J, et al. The uniform distribution of SiC particles in an A356-SiCp composite produced by the tilt-blade mechanical stirring. Acta Metall Sinica, 2013, 26(1): 69 DOI: 10.1007/s40195-012-0502-9
    [8]
    Lim S C, Gupta M, Ren L, et al. The tribological properties of Al-Cu/SiCp metal-matrix composites fabricated using the rheocasting technique. J Mater Process Technol, 1999, 89-90(8): 591 http://www.sciencedirect.com/science/article/pii/S0924013699000679
    [9]
    Elsharkawi E A, Pucella G, Côte P, et al. Rheocasting of semi-solid Al359/20% SiC metal matrix composite using SEED process. Can Metall Q, 2014, 53(2): 160 DOI: 10.1179/1879139513Y.0000000120
    [10]
    Wang D M, Zheng Z X, Lv J, et al. Enhanced thermal conductive 3D-SiC/Al-Si-Mg interpenetrating composites fabricated by pressureless infiltration. Ceram Int, 2017, 43(2): 1755 DOI: 10.1016/j.ceramint.2016.10.104
    [11]
    Yang L, Zhang M. Fabrication of SiCp/Cu-Al electronic packaging material by pressureless infiltration method. Mater Sci Technol, 2013, 29(3): 326 DOI: 10.1179/1743284712Y.0000000152
    [12]
    Izadi H, Nolting A, Munro C, et al. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol, 2013, 213(11): 1900 DOI: 10.1016/j.jmatprotec.2013.05.012
    [13]
    Salehi M, Farnoush H, Mohandesi J A. Fabrication and characterization of functionally graded Al-SiC nanocomposite by using a novel multistep friction stir processing. Mater Des, 2014, 63(2): 419 http://www.sciencedirect.com/science/article/pii/S0261306914004622
    [14]
    Zulfia A, Hand R J. Role of Mg and Mg+Si as external dopants in production of pure Al-SiC metal matrix composites by pressureless infiltration. Mater Sci Technol, 2000, 16(7-8): 867 DOI: 10.1179/026708300101508586
    [15]
    Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R, 2000, 29(3-4): 49 DOI: 10.1016/S0927-796X(00)00024-3
    [16]
    Daniel B S S, Murthy V S R, Murty G S. Metal-ceramic composites via in-situ methods. J Mater Process Technol, 1997, 68(2): 132 DOI: 10.1016/S0924-0136(96)00020-9
    [17]
    Oden L L, McCune R A. Phase equilibria in the Al-Si-C system. Metall Trans A, 1987, 18(12): 2005 DOI: 10.1007/BF02647073
    [18]
    Du X F, Gao T, Li D K, et al. A novel approach to synthesize SiC particles by in situ reaction in Al-Si-C alloys. J Alloys Compd, 2014, 588(10): 374 http://www.sciencedirect.com/science/article/pii/S0925838813028296
    [19]
    Gao T, Wang D, Du X F, et al. Phase transformation mechanism of Al4C3 by the diffusion of Si and a novel method for in situ synthesis of SiC particles in Al melt. J Alloys Compd, 2016, 685: 91 DOI: 10.1016/j.jallcom.2016.05.234
    [20]
    赵渊博. 原位合成SiC纳米颗粒及SiC/Al复合材料的研究[学位论文]. 西安: 陕西科技大学, 2016

    Zhao Y B. Research of SiC Nanoparticles and SiC/Al Composites by in situ Reaction[Dissertation]. Xi'an: Shaanxi University of Science and Technology, 2016
    [21]
    Hong C, Gu D D, Dai D H, et al. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol, 2013, 54(32): 98 http://www.sciencedirect.com/science/article/pii/S003039921300176X
    [22]
    Patterson A L. The Scherrer formula for X-ray particle size determination. Phys Rev, 1939, 56(10): 978 DOI: 10.1103/PhysRev.56.978
    [23]
    梁英教, 车荫昌. 无机物热力学数据手册1. 沈阳: 东北大学出版社, 1993

    Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 1. Shenyang: Northeastern University Press, 1993
    [24]
    梁英教, 车荫昌. 无机物热力学数据手册2. 沈阳: 东北大学出版社, 1993

    Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 2. Shenyang: Northeastern University Press, 1993
    [25]
    Nie J F, Li D K, Wang E Z, et al. In-situ synthesis of SiC particles by the structural evolution of TiCx in Al-Si melt. J Alloys Compd, 2014, 613: 407 DOI: 10.1016/j.jallcom.2014.06.040
    [26]
    Veeresh Kumar G B, Rao C S P, Selvaraj N. Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites-a review. J Miner Mater Charact Eng, 2011, 10: 59 http://www.oalib.com/paper/12310
    [27]
    Chang F, Gu D D, Dai D H, et al. Selective laser melting of in-situ Al4SiC4+SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size. Surf Coat Technol, 2015, 272: 15 DOI: 10.1016/j.surfcoat.2015.04.029
  • Related Articles

    [1]ZHANG Xiuling, CHEN Yuhong, QI Wubin, ZHANG Qiang, HAI Wanxiu. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering[J]. Powder Metallurgy Technology, 2024, 42(2): 165-169, 176. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090009
    [2]WAN Lin, ZHANG Jifeng, SUN Lu, QIU Tianxu, SHEN Xiaoping. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 508-515. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090001
    [3]ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009
    [4]CHEN Jin, XIONG Ning, GE Qi-lu, WANG Tie-jun, CAI Jing, LIU Gui-Rong. Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(2): 132-137. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
    [5]ZHANG Bing-qing, WANG Qi, WANG Sui, WANG Hua-lei, JIANG Feng, SUN Jun. Study on the microstructure and properties of powder-forged gear materials[J]. Powder Metallurgy Technology, 2020, 38(2): 113-120. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.005
    [6]ZHANG Ren, WANG Xu-lei, HE Xin-bo. Effect of Cr coating on microstructure and properties of graphite flake/Cu composites[J]. Powder Metallurgy Technology, 2019, 37(4): 248-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.002
    [7]ZHOU Qiang, WEI Shi-chao, YANG Shu-zhong, LUO Li, CHANG De-min. Preparation of FeCuNiSnCo powder by mechanical alloying and the research on physical properties of its matrix material[J]. Powder Metallurgy Technology, 2019, 37(1): 30-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.005
    [8]NI Feng, FU Li-hua, DENG Pan, WU Peng-fei. Effects of SiO2-B2O3-Al2O3 scaling powder on microstructures and properties of Cu-C-SnO2 porous materials sintered by powders[J]. Powder Metallurgy Technology, 2018, 36(5): 335-341. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.003
    [9]LIU Gui-min, DU Lin-fei, YAN Tao, ZHU Shuo, HUI Yang. Effect of rare earth Ce on the microstructure and properties of Cu-Al2O3 composites[J]. Powder Metallurgy Technology, 2018, 36(3): 196-200, 216. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.006
    [10]Thermophysical Properties of ZrCp/W Composites Prepared by Hot-pressing[J]. Powder Metallurgy Technology, 2002, 20(5): 263-266. DOI: 10.3321/j.issn:1001-3784.2002.05.001
  • Cited by

    Periodical cited type(17)

    1. 蔡锦文,冯可芹,王海波,刘艳芳,陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究. 材料导报. 2024(01): 158-163 .
    2. 陈施润,陈文革,钱颖,张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究. 中国腐蚀与防护学报. 2024(01): 107-118 .
    3. 张可萌,柳培,王杰,侯博,刘振伟,高岩. Cu-(石墨烯/6063Al)复合材料的设计制备及组织性能研究. 粉末冶金工业. 2024(02): 75-80 .
    4. 冯俊俊,张会,李亚鹏,段瑾瑜,刘禹,蒲卓林. 石墨烯负载铜增强铜基块体复合材料的制备及其性能. 复合材料学报. 2023(01): 485-498 .
    5. 施琴,朱和军. 银包覆过渡族金属硒化物的制备及银基复合材料性能. 粉末冶金技术. 2023(06): 536-542 . 本站查看
    6. 陈华强,陶应啟,李晓静,吴云洪,王吉应,叶墨稼,余贤旺. 化学气相沉积法及机械混合法添加石墨烯对铜铬触头性能的影响. 功能材料. 2023(12): 12148-12153+12162 .
    7. 陈伟光,刘娟. 添加剂对传感器用PCB环氧树脂板真空蒸镀铜层参数优化及结构的影响. 材料保护. 2022(01): 159-164 .
    8. 李慧莹,王玄玉,孙淑宝,刘志龙,董文杰. 镀镍石墨烯制备及红外干扰性能. 含能材料. 2022(12): 1213-1218 .
    9. 文国富,梁艳娟,王秀飞,伊春强,尹彩流,蒙洁丽. 球磨参数对石墨烯增强铜基复合材料性能的影响. 润滑与密封. 2021(01): 103-110 .
    10. 马强,王健,韦琪龙,路承功,魏智强. 碳包覆CdS纳米颗粒的光学性能研究. 粉末冶金技术. 2021(01): 54-61 . 本站查看
    11. 梁燕,王献辉,李航宇,倪菁艺,金千贺. 石墨烯增强铜基复合材料的制备及研究现状. 稀有金属材料与工程. 2021(07): 2607-2619 .
    12. 施琴,朱和军. 银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响. 粉末冶金技术. 2020(04): 257-261+274 . 本站查看
    13. 赵敬,彭倚天. 石墨烯表面化学镀铜及铜/石墨烯复合材料的性能研究. 电镀与涂饰. 2020(21): 1481-1485 .
    14. 冯孟奇,贾淑果,李韶林,宋克兴,国秀花,张祥峰,林焕然. 铜/碳复合材料的研究进展. 材料热处理学报. 2020(12): 25-36 .
    15. 刘宇宁,彭冬冬,张辉,甘春雷. 烧结压力对石墨烯增强铜基复合材料组织性能的影响. 功能材料. 2019(01): 1183-1187+1191 .
    16. 郭申申,凤仪,赵浩,钱刚,张学斌. 石墨烯增强铜基复合材料的制备及其微观组织与性能研究. 金属功能材料. 2019(04): 16-22 .
    17. 巩正奇,王灿明,崔洪芝,张文娅. 石墨烯对激光熔覆镍基碳化钨涂层组织及性能影响. 粉末冶金技术. 2019(05): 323-331 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1101) PDF downloads (30) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return