AdvancedSearch
LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
Citation: LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007

Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis

More Information
  • Corresponding author:

    ZHU Jian-feng, E-mail: zhujf@sust.edu.cn

  • Received Date: December 15, 2018
  • SiC/Al-18Si composites with different SiC content by mass were in-situ synthesized by cold pressing and vacuum sintering, using aluminium powders, silicon powders, and graphite powders as raw materials. The phase composition and microstructures of the aluminum matrix composites were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), and energy disperse spectroscope (EDS). The effect of SiC on the microstructure, flexural strength, and microhardness of the composites were analyzed, and the variation in mechanical properties of the composites was discussed. In the results, the matrix phase of the composites is Al phase and the second phases are Si and SiC phases. The fine SiC particles by in-situ synthesis with the size ranging from 0.2 to 2.8 μm can be dispersed in Al matrix, showing the multi-scale characteristics of micron and submicron. With the increase in SiC content by mass, the microhardness of SiC/Al-18Si composites increases; meanwhile, the average sizes of SiC particles increase from 0.81 to 1.13 μm, but the SiC particles are still uniformly distributed in Al matrix, making the microhardness of the SiC/Al-18Si composites much higher than that of Al-18Si. When the mass fraction of SiC is 30%, the microhardness of the SiC/Al-18Si composites is the highest (HV 134), which is 88% higher than that of Al-18Si.
  • [1]
    Grasso S, Saunders T, Porwal H, et al. Flash spark plasma sintering (FSPS) of α and β SiC. J Am Ceram Soc, 2016, 99(5): 1534 DOI: 10.1111/jace.14158
    [2]
    Buffiere J Y, Maire E, Verdu C, et al. Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography. Mater Sci Eng A, 1997, 234-236: 633 DOI: 10.1016/S0921-5093(97)00302-X
    [3]
    El-kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des, 2014, 54(2): 348 http://www.sciencedirect.com/science/article/pii/S0261306913007930
    [4]
    Iveković A, Novak S, Dražić G, et al. Current status and prospects of SiCf/SiC for fusion structural applications. J Eur Ceram Soc, 2013, 33(10): 1577 DOI: 10.1016/j.jeurceramsoc.2013.02.013
    [5]
    高红霞, 王华丽, 杨东. 单一纳米及纳/微米SiC混合颗粒增强铝基复合材料研究. 粉末冶金技术, 2016, 34(1): 11 DOI: 10.3969/j.issn.1001-3784.2016.01.002

    Gao H X, Wang H L, Yang D. Study on single nanoparticles and nano/micro SiC particles reinforced aluminum composites. Powder Metall Technol, 2016, 34(1): 11 DOI: 10.3969/j.issn.1001-3784.2016.01.002
    [6]
    Li S, Xiong D G, Liu M, et al. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceram Int, 2014, 40(5): 7539 DOI: 10.1016/j.ceramint.2013.12.105
    [7]
    Du Y H, Zhang P, Wang Y J, et al. The uniform distribution of SiC particles in an A356-SiCp composite produced by the tilt-blade mechanical stirring. Acta Metall Sinica, 2013, 26(1): 69 DOI: 10.1007/s40195-012-0502-9
    [8]
    Lim S C, Gupta M, Ren L, et al. The tribological properties of Al-Cu/SiCp metal-matrix composites fabricated using the rheocasting technique. J Mater Process Technol, 1999, 89-90(8): 591 http://www.sciencedirect.com/science/article/pii/S0924013699000679
    [9]
    Elsharkawi E A, Pucella G, Côte P, et al. Rheocasting of semi-solid Al359/20% SiC metal matrix composite using SEED process. Can Metall Q, 2014, 53(2): 160 DOI: 10.1179/1879139513Y.0000000120
    [10]
    Wang D M, Zheng Z X, Lv J, et al. Enhanced thermal conductive 3D-SiC/Al-Si-Mg interpenetrating composites fabricated by pressureless infiltration. Ceram Int, 2017, 43(2): 1755 DOI: 10.1016/j.ceramint.2016.10.104
    [11]
    Yang L, Zhang M. Fabrication of SiCp/Cu-Al electronic packaging material by pressureless infiltration method. Mater Sci Technol, 2013, 29(3): 326 DOI: 10.1179/1743284712Y.0000000152
    [12]
    Izadi H, Nolting A, Munro C, et al. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol, 2013, 213(11): 1900 DOI: 10.1016/j.jmatprotec.2013.05.012
    [13]
    Salehi M, Farnoush H, Mohandesi J A. Fabrication and characterization of functionally graded Al-SiC nanocomposite by using a novel multistep friction stir processing. Mater Des, 2014, 63(2): 419 http://www.sciencedirect.com/science/article/pii/S0261306914004622
    [14]
    Zulfia A, Hand R J. Role of Mg and Mg+Si as external dopants in production of pure Al-SiC metal matrix composites by pressureless infiltration. Mater Sci Technol, 2000, 16(7-8): 867 DOI: 10.1179/026708300101508586
    [15]
    Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R, 2000, 29(3-4): 49 DOI: 10.1016/S0927-796X(00)00024-3
    [16]
    Daniel B S S, Murthy V S R, Murty G S. Metal-ceramic composites via in-situ methods. J Mater Process Technol, 1997, 68(2): 132 DOI: 10.1016/S0924-0136(96)00020-9
    [17]
    Oden L L, McCune R A. Phase equilibria in the Al-Si-C system. Metall Trans A, 1987, 18(12): 2005 DOI: 10.1007/BF02647073
    [18]
    Du X F, Gao T, Li D K, et al. A novel approach to synthesize SiC particles by in situ reaction in Al-Si-C alloys. J Alloys Compd, 2014, 588(10): 374 http://www.sciencedirect.com/science/article/pii/S0925838813028296
    [19]
    Gao T, Wang D, Du X F, et al. Phase transformation mechanism of Al4C3 by the diffusion of Si and a novel method for in situ synthesis of SiC particles in Al melt. J Alloys Compd, 2016, 685: 91 DOI: 10.1016/j.jallcom.2016.05.234
    [20]
    赵渊博. 原位合成SiC纳米颗粒及SiC/Al复合材料的研究[学位论文]. 西安: 陕西科技大学, 2016

    Zhao Y B. Research of SiC Nanoparticles and SiC/Al Composites by in situ Reaction[Dissertation]. Xi'an: Shaanxi University of Science and Technology, 2016
    [21]
    Hong C, Gu D D, Dai D H, et al. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol, 2013, 54(32): 98 http://www.sciencedirect.com/science/article/pii/S003039921300176X
    [22]
    Patterson A L. The Scherrer formula for X-ray particle size determination. Phys Rev, 1939, 56(10): 978 DOI: 10.1103/PhysRev.56.978
    [23]
    梁英教, 车荫昌. 无机物热力学数据手册1. 沈阳: 东北大学出版社, 1993

    Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 1. Shenyang: Northeastern University Press, 1993
    [24]
    梁英教, 车荫昌. 无机物热力学数据手册2. 沈阳: 东北大学出版社, 1993

    Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 2. Shenyang: Northeastern University Press, 1993
    [25]
    Nie J F, Li D K, Wang E Z, et al. In-situ synthesis of SiC particles by the structural evolution of TiCx in Al-Si melt. J Alloys Compd, 2014, 613: 407 DOI: 10.1016/j.jallcom.2014.06.040
    [26]
    Veeresh Kumar G B, Rao C S P, Selvaraj N. Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites-a review. J Miner Mater Charact Eng, 2011, 10: 59 http://www.oalib.com/paper/12310
    [27]
    Chang F, Gu D D, Dai D H, et al. Selective laser melting of in-situ Al4SiC4+SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size. Surf Coat Technol, 2015, 272: 15 DOI: 10.1016/j.surfcoat.2015.04.029
  • Cited by

    Periodical cited type(5)

    1. 欧阳维,翟博,陈文琳,宋奎晶,陈畅,钟志宏. TiC颗粒增强FeCrCoMnNi基复合材料的微观组织与力学性能. 粉末冶金技术. 2024(04): 338-345 . 本站查看
    2. 汪家瑜,方华婵,张芊芊,段志英,方舟,张茁,陈卓,许永祥,任子安. 碳纤维粉末改性铁基粉末冶金材料的组织与性能. 粉末冶金材料科学与工程. 2023(04): 390-403 .
    3. 刘增林,韩伟,王彦康,王涛,吕伟龙. 陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能. 粉末冶金技术. 2022(06): 527-534 . 本站查看
    4. 熊陶亮. 钢铁冶金流程节能技术及要点分析. 中国金属通报. 2020(04): 111-112 .
    5. 耿文霞,王秋林,万斌,徐如涛,李昂,赵龙志. TiC_p/Fe复合材料的界面反应. 粉末冶金工业. 2020(04): 51-56 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1102) PDF downloads (30) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return