Citation: | LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007 |
[1] |
Grasso S, Saunders T, Porwal H, et al. Flash spark plasma sintering (FSPS) of α and β SiC. J Am Ceram Soc, 2016, 99(5): 1534 DOI: 10.1111/jace.14158
|
[2] |
Buffiere J Y, Maire E, Verdu C, et al. Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography. Mater Sci Eng A, 1997, 234-236: 633 DOI: 10.1016/S0921-5093(97)00302-X
|
[3] |
El-kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des, 2014, 54(2): 348 http://www.sciencedirect.com/science/article/pii/S0261306913007930
|
[4] |
Iveković A, Novak S, Dražić G, et al. Current status and prospects of SiCf/SiC for fusion structural applications. J Eur Ceram Soc, 2013, 33(10): 1577 DOI: 10.1016/j.jeurceramsoc.2013.02.013
|
[5] |
高红霞, 王华丽, 杨东. 单一纳米及纳/微米SiC混合颗粒增强铝基复合材料研究. 粉末冶金技术, 2016, 34(1): 11 DOI: 10.3969/j.issn.1001-3784.2016.01.002
Gao H X, Wang H L, Yang D. Study on single nanoparticles and nano/micro SiC particles reinforced aluminum composites. Powder Metall Technol, 2016, 34(1): 11 DOI: 10.3969/j.issn.1001-3784.2016.01.002
|
[6] |
Li S, Xiong D G, Liu M, et al. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceram Int, 2014, 40(5): 7539 DOI: 10.1016/j.ceramint.2013.12.105
|
[7] |
Du Y H, Zhang P, Wang Y J, et al. The uniform distribution of SiC particles in an A356-SiCp composite produced by the tilt-blade mechanical stirring. Acta Metall Sinica, 2013, 26(1): 69 DOI: 10.1007/s40195-012-0502-9
|
[8] |
Lim S C, Gupta M, Ren L, et al. The tribological properties of Al-Cu/SiCp metal-matrix composites fabricated using the rheocasting technique. J Mater Process Technol, 1999, 89-90(8): 591 http://www.sciencedirect.com/science/article/pii/S0924013699000679
|
[9] |
Elsharkawi E A, Pucella G, Côte P, et al. Rheocasting of semi-solid Al359/20% SiC metal matrix composite using SEED process. Can Metall Q, 2014, 53(2): 160 DOI: 10.1179/1879139513Y.0000000120
|
[10] |
Wang D M, Zheng Z X, Lv J, et al. Enhanced thermal conductive 3D-SiC/Al-Si-Mg interpenetrating composites fabricated by pressureless infiltration. Ceram Int, 2017, 43(2): 1755 DOI: 10.1016/j.ceramint.2016.10.104
|
[11] |
Yang L, Zhang M. Fabrication of SiCp/Cu-Al electronic packaging material by pressureless infiltration method. Mater Sci Technol, 2013, 29(3): 326 DOI: 10.1179/1743284712Y.0000000152
|
[12] |
Izadi H, Nolting A, Munro C, et al. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol, 2013, 213(11): 1900 DOI: 10.1016/j.jmatprotec.2013.05.012
|
[13] |
Salehi M, Farnoush H, Mohandesi J A. Fabrication and characterization of functionally graded Al-SiC nanocomposite by using a novel multistep friction stir processing. Mater Des, 2014, 63(2): 419 http://www.sciencedirect.com/science/article/pii/S0261306914004622
|
[14] |
Zulfia A, Hand R J. Role of Mg and Mg+Si as external dopants in production of pure Al-SiC metal matrix composites by pressureless infiltration. Mater Sci Technol, 2000, 16(7-8): 867 DOI: 10.1179/026708300101508586
|
[15] |
Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R, 2000, 29(3-4): 49 DOI: 10.1016/S0927-796X(00)00024-3
|
[16] |
Daniel B S S, Murthy V S R, Murty G S. Metal-ceramic composites via in-situ methods. J Mater Process Technol, 1997, 68(2): 132 DOI: 10.1016/S0924-0136(96)00020-9
|
[17] |
Oden L L, McCune R A. Phase equilibria in the Al-Si-C system. Metall Trans A, 1987, 18(12): 2005 DOI: 10.1007/BF02647073
|
[18] |
Du X F, Gao T, Li D K, et al. A novel approach to synthesize SiC particles by in situ reaction in Al-Si-C alloys. J Alloys Compd, 2014, 588(10): 374 http://www.sciencedirect.com/science/article/pii/S0925838813028296
|
[19] |
Gao T, Wang D, Du X F, et al. Phase transformation mechanism of Al4C3 by the diffusion of Si and a novel method for in situ synthesis of SiC particles in Al melt. J Alloys Compd, 2016, 685: 91 DOI: 10.1016/j.jallcom.2016.05.234
|
[20] |
赵渊博. 原位合成SiC纳米颗粒及SiC/Al复合材料的研究[学位论文]. 西安: 陕西科技大学, 2016
Zhao Y B. Research of SiC Nanoparticles and SiC/Al Composites by in situ Reaction[Dissertation]. Xi'an: Shaanxi University of Science and Technology, 2016
|
[21] |
Hong C, Gu D D, Dai D H, et al. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol, 2013, 54(32): 98 http://www.sciencedirect.com/science/article/pii/S003039921300176X
|
[22] |
Patterson A L. The Scherrer formula for X-ray particle size determination. Phys Rev, 1939, 56(10): 978 DOI: 10.1103/PhysRev.56.978
|
[23] |
梁英教, 车荫昌. 无机物热力学数据手册1. 沈阳: 东北大学出版社, 1993
Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 1. Shenyang: Northeastern University Press, 1993
|
[24] |
梁英教, 车荫昌. 无机物热力学数据手册2. 沈阳: 东北大学出版社, 1993
Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 2. Shenyang: Northeastern University Press, 1993
|
[25] |
Nie J F, Li D K, Wang E Z, et al. In-situ synthesis of SiC particles by the structural evolution of TiCx in Al-Si melt. J Alloys Compd, 2014, 613: 407 DOI: 10.1016/j.jallcom.2014.06.040
|
[26] |
Veeresh Kumar G B, Rao C S P, Selvaraj N. Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites-a review. J Miner Mater Charact Eng, 2011, 10: 59 http://www.oalib.com/paper/12310
|
[27] |
Chang F, Gu D D, Dai D H, et al. Selective laser melting of in-situ Al4SiC4+SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size. Surf Coat Technol, 2015, 272: 15 DOI: 10.1016/j.surfcoat.2015.04.029
|
1. |
蔡锦文,冯可芹,王海波,刘艳芳,陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究. 材料导报. 2024(01): 158-163 .
![]() | |
2. |
陈施润,陈文革,钱颖,张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究. 中国腐蚀与防护学报. 2024(01): 107-118 .
![]() | |
3. |
张可萌,柳培,王杰,侯博,刘振伟,高岩. Cu-(石墨烯/6063Al)复合材料的设计制备及组织性能研究. 粉末冶金工业. 2024(02): 75-80 .
![]() | |
4. |
冯俊俊,张会,李亚鹏,段瑾瑜,刘禹,蒲卓林. 石墨烯负载铜增强铜基块体复合材料的制备及其性能. 复合材料学报. 2023(01): 485-498 .
![]() | |
5. |
施琴,朱和军. 银包覆过渡族金属硒化物的制备及银基复合材料性能. 粉末冶金技术. 2023(06): 536-542 .
![]() | |
6. |
陈华强,陶应啟,李晓静,吴云洪,王吉应,叶墨稼,余贤旺. 化学气相沉积法及机械混合法添加石墨烯对铜铬触头性能的影响. 功能材料. 2023(12): 12148-12153+12162 .
![]() | |
7. |
陈伟光,刘娟. 添加剂对传感器用PCB环氧树脂板真空蒸镀铜层参数优化及结构的影响. 材料保护. 2022(01): 159-164 .
![]() | |
8. |
李慧莹,王玄玉,孙淑宝,刘志龙,董文杰. 镀镍石墨烯制备及红外干扰性能. 含能材料. 2022(12): 1213-1218 .
![]() | |
9. |
文国富,梁艳娟,王秀飞,伊春强,尹彩流,蒙洁丽. 球磨参数对石墨烯增强铜基复合材料性能的影响. 润滑与密封. 2021(01): 103-110 .
![]() | |
10. |
马强,王健,韦琪龙,路承功,魏智强. 碳包覆CdS纳米颗粒的光学性能研究. 粉末冶金技术. 2021(01): 54-61 .
![]() | |
11. |
梁燕,王献辉,李航宇,倪菁艺,金千贺. 石墨烯增强铜基复合材料的制备及研究现状. 稀有金属材料与工程. 2021(07): 2607-2619 .
![]() | |
12. |
施琴,朱和军. 银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响. 粉末冶金技术. 2020(04): 257-261+274 .
![]() | |
13. |
赵敬,彭倚天. 石墨烯表面化学镀铜及铜/石墨烯复合材料的性能研究. 电镀与涂饰. 2020(21): 1481-1485 .
![]() | |
14. |
冯孟奇,贾淑果,李韶林,宋克兴,国秀花,张祥峰,林焕然. 铜/碳复合材料的研究进展. 材料热处理学报. 2020(12): 25-36 .
![]() | |
15. |
刘宇宁,彭冬冬,张辉,甘春雷. 烧结压力对石墨烯增强铜基复合材料组织性能的影响. 功能材料. 2019(01): 1183-1187+1191 .
![]() | |
16. |
郭申申,凤仪,赵浩,钱刚,张学斌. 石墨烯增强铜基复合材料的制备及其微观组织与性能研究. 金属功能材料. 2019(04): 16-22 .
![]() | |
17. |
巩正奇,王灿明,崔洪芝,张文娅. 石墨烯对激光熔覆镍基碳化钨涂层组织及性能影响. 粉末冶金技术. 2019(05): 323-331 .
![]() |