Citation: | LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007 |
[1] |
Grasso S, Saunders T, Porwal H, et al. Flash spark plasma sintering (FSPS) of α and β SiC. J Am Ceram Soc, 2016, 99(5): 1534 DOI: 10.1111/jace.14158
|
[2] |
Buffiere J Y, Maire E, Verdu C, et al. Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography. Mater Sci Eng A, 1997, 234-236: 633 DOI: 10.1016/S0921-5093(97)00302-X
|
[3] |
El-kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des, 2014, 54(2): 348 http://www.sciencedirect.com/science/article/pii/S0261306913007930
|
[4] |
Iveković A, Novak S, Dražić G, et al. Current status and prospects of SiCf/SiC for fusion structural applications. J Eur Ceram Soc, 2013, 33(10): 1577 DOI: 10.1016/j.jeurceramsoc.2013.02.013
|
[5] |
高红霞, 王华丽, 杨东. 单一纳米及纳/微米SiC混合颗粒增强铝基复合材料研究. 粉末冶金技术, 2016, 34(1): 11 DOI: 10.3969/j.issn.1001-3784.2016.01.002
Gao H X, Wang H L, Yang D. Study on single nanoparticles and nano/micro SiC particles reinforced aluminum composites. Powder Metall Technol, 2016, 34(1): 11 DOI: 10.3969/j.issn.1001-3784.2016.01.002
|
[6] |
Li S, Xiong D G, Liu M, et al. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceram Int, 2014, 40(5): 7539 DOI: 10.1016/j.ceramint.2013.12.105
|
[7] |
Du Y H, Zhang P, Wang Y J, et al. The uniform distribution of SiC particles in an A356-SiCp composite produced by the tilt-blade mechanical stirring. Acta Metall Sinica, 2013, 26(1): 69 DOI: 10.1007/s40195-012-0502-9
|
[8] |
Lim S C, Gupta M, Ren L, et al. The tribological properties of Al-Cu/SiCp metal-matrix composites fabricated using the rheocasting technique. J Mater Process Technol, 1999, 89-90(8): 591 http://www.sciencedirect.com/science/article/pii/S0924013699000679
|
[9] |
Elsharkawi E A, Pucella G, Côte P, et al. Rheocasting of semi-solid Al359/20% SiC metal matrix composite using SEED process. Can Metall Q, 2014, 53(2): 160 DOI: 10.1179/1879139513Y.0000000120
|
[10] |
Wang D M, Zheng Z X, Lv J, et al. Enhanced thermal conductive 3D-SiC/Al-Si-Mg interpenetrating composites fabricated by pressureless infiltration. Ceram Int, 2017, 43(2): 1755 DOI: 10.1016/j.ceramint.2016.10.104
|
[11] |
Yang L, Zhang M. Fabrication of SiCp/Cu-Al electronic packaging material by pressureless infiltration method. Mater Sci Technol, 2013, 29(3): 326 DOI: 10.1179/1743284712Y.0000000152
|
[12] |
Izadi H, Nolting A, Munro C, et al. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol, 2013, 213(11): 1900 DOI: 10.1016/j.jmatprotec.2013.05.012
|
[13] |
Salehi M, Farnoush H, Mohandesi J A. Fabrication and characterization of functionally graded Al-SiC nanocomposite by using a novel multistep friction stir processing. Mater Des, 2014, 63(2): 419 http://www.sciencedirect.com/science/article/pii/S0261306914004622
|
[14] |
Zulfia A, Hand R J. Role of Mg and Mg+Si as external dopants in production of pure Al-SiC metal matrix composites by pressureless infiltration. Mater Sci Technol, 2000, 16(7-8): 867 DOI: 10.1179/026708300101508586
|
[15] |
Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R, 2000, 29(3-4): 49 DOI: 10.1016/S0927-796X(00)00024-3
|
[16] |
Daniel B S S, Murthy V S R, Murty G S. Metal-ceramic composites via in-situ methods. J Mater Process Technol, 1997, 68(2): 132 DOI: 10.1016/S0924-0136(96)00020-9
|
[17] |
Oden L L, McCune R A. Phase equilibria in the Al-Si-C system. Metall Trans A, 1987, 18(12): 2005 DOI: 10.1007/BF02647073
|
[18] |
Du X F, Gao T, Li D K, et al. A novel approach to synthesize SiC particles by in situ reaction in Al-Si-C alloys. J Alloys Compd, 2014, 588(10): 374 http://www.sciencedirect.com/science/article/pii/S0925838813028296
|
[19] |
Gao T, Wang D, Du X F, et al. Phase transformation mechanism of Al4C3 by the diffusion of Si and a novel method for in situ synthesis of SiC particles in Al melt. J Alloys Compd, 2016, 685: 91 DOI: 10.1016/j.jallcom.2016.05.234
|
[20] |
赵渊博. 原位合成SiC纳米颗粒及SiC/Al复合材料的研究[学位论文]. 西安: 陕西科技大学, 2016
Zhao Y B. Research of SiC Nanoparticles and SiC/Al Composites by in situ Reaction[Dissertation]. Xi'an: Shaanxi University of Science and Technology, 2016
|
[21] |
Hong C, Gu D D, Dai D H, et al. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol, 2013, 54(32): 98 http://www.sciencedirect.com/science/article/pii/S003039921300176X
|
[22] |
Patterson A L. The Scherrer formula for X-ray particle size determination. Phys Rev, 1939, 56(10): 978 DOI: 10.1103/PhysRev.56.978
|
[23] |
梁英教, 车荫昌. 无机物热力学数据手册1. 沈阳: 东北大学出版社, 1993
Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 1. Shenyang: Northeastern University Press, 1993
|
[24] |
梁英教, 车荫昌. 无机物热力学数据手册2. 沈阳: 东北大学出版社, 1993
Liang Y J, Che Y C. Thermochemical Properties of Inorganic Substance 2. Shenyang: Northeastern University Press, 1993
|
[25] |
Nie J F, Li D K, Wang E Z, et al. In-situ synthesis of SiC particles by the structural evolution of TiCx in Al-Si melt. J Alloys Compd, 2014, 613: 407 DOI: 10.1016/j.jallcom.2014.06.040
|
[26] |
Veeresh Kumar G B, Rao C S P, Selvaraj N. Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites-a review. J Miner Mater Charact Eng, 2011, 10: 59 http://www.oalib.com/paper/12310
|
[27] |
Chang F, Gu D D, Dai D H, et al. Selective laser melting of in-situ Al4SiC4+SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size. Surf Coat Technol, 2015, 272: 15 DOI: 10.1016/j.surfcoat.2015.04.029
|
1. |
欧阳维,翟博,陈文琳,宋奎晶,陈畅,钟志宏. TiC颗粒增强FeCrCoMnNi基复合材料的微观组织与力学性能. 粉末冶金技术. 2024(04): 338-345 .
![]() | |
2. |
汪家瑜,方华婵,张芊芊,段志英,方舟,张茁,陈卓,许永祥,任子安. 碳纤维粉末改性铁基粉末冶金材料的组织与性能. 粉末冶金材料科学与工程. 2023(04): 390-403 .
![]() | |
3. |
刘增林,韩伟,王彦康,王涛,吕伟龙. 陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能. 粉末冶金技术. 2022(06): 527-534 .
![]() | |
4. |
熊陶亮. 钢铁冶金流程节能技术及要点分析. 中国金属通报. 2020(04): 111-112 .
![]() | |
5. |
耿文霞,王秋林,万斌,徐如涛,李昂,赵龙志. TiC_p/Fe复合材料的界面反应. 粉末冶金工业. 2020(04): 51-56 .
![]() |