AdvancedSearch
LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Yu-yang, JIANG Qiu-tong, LIU Yuan. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding[J]. Powder Metallurgy Technology, 2022, 40(3): 245-250. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010001
Citation: LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Yu-yang, JIANG Qiu-tong, LIU Yuan. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding[J]. Powder Metallurgy Technology, 2022, 40(3): 245-250. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010001

Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding

More Information
  • Corresponding author:

    LI Xin-xing, E-mail: newstar1015@126.com

  • Received Date: April 02, 2020
  • Accepted Date: April 02, 2020
  • Available Online: April 06, 2022
  • Ni-based alloy coatings on the 45 steel surface were prepared by sintering cladding method, using Ni25, Ni45, and Ni60 alloy powders, respectively. The microstructure, phase composition, and interface structure of the alloy coatings were analyzed by metallographic microscope and X-ray diffractometer, and the microhardness of the coatings was tested. The results show that, the relatively compacted Ni-based alloy coatings on the 45 steel surface can be obtained by sintering cladding technology. Ni25 alloy coatings are mainly consisted of the coarse γ-(Ni, Fe) austenite and a small amount of Cr23C6 carbide phase. In addition to the γ-(Ni, Fe) austenite and Cr23C6 carbide phases, the CrB boride phases also appear in the Ni45 and Ni60 alloy coatings. All of the three Ni-based alloy coatings have the good metallurgical bonding with the 45 steel matrix. The coatings show the dense microstructure with the fine particles uniformly distributed in the matrix, when the sintering temperature is 1100 ℃ and the holding time is 15 min. The Ni60 alloy coatings have the highest hardness, about HV 735; that of the Ni45 alloy coatings are the next, about HV 534; and the Ni25 alloy coatings show the lowest hardness, only HV 236.
  • [1]
    赵健, 刘光, 马冰, 等. 铜表面激光合金化和激光熔覆制备Ni/NiCrBSi梯度涂层. 兵器材料科学与工程, 2018, 41(2): 53

    Zhao J, Liu G, Ma B, et al. Ni/NiCrBSi gradient coating on copper surface fabricated by combination of laser surface alloying and laser cladding. Ordn Mater Sci Eng, 2018, 41(2): 53
    [2]
    余廷, 陈杰, 饶锡新, 等. 激光熔覆NiCrBSi涂层的高温摩擦行为. 激光与光电子学进展, 2019, 56(10): 101601 DOI: 10.3788/LOP56.101601

    Yu T, Chen J, Rao X X, et al. High temperature wear behaviors of laser cladded NiCrBSi coatings. Laser Optoelectron Prog, 2019, 56(10): 101601 DOI: 10.3788/LOP56.101601
    [3]
    刘祥庆, 郭志猛, 高克玮, 等. 感应熔覆Ni60涂层显微组织及耐蚀性. 材料热处理学报, 2012, 33(增刊 1): 96

    Liu X Q, Guo Z M, Gao K W, et al. Microstructure and corrosion resistance of Ni60 coating prepared by induction cladding. Trans Mater Heat Treat, 2012, 33(Suppl 1): 96
    [4]
    杨理京, 李祉宏, 李波, 等. 超音速激光沉积法制备Ni60涂层的显微组织及沉积机理. 中国激光, 2015, 42(3): 0306005 DOI: 10.3788/CJL201542.0306005

    Yang L J, Li Z H, Li B, et al. Microstructure and deposition mechanism of Ni60 coatings prepared by supersonic laser deposition. Chin J Lasers, 2015, 42(3): 0306005 DOI: 10.3788/CJL201542.0306005
    [5]
    肖逸锋, 曾凡检, 匡雯慧, 等. 真空烧结熔覆Ni60涂层的组织和性能. 金属热处理, 2017, 42(7): 83

    Xiao Y F, Zeng F J, Kuang W H, et al. Microstructure and properties of Ni60 coating by vacuum sintering cladding. Heat Treat Met, 2017, 42(7): 83
    [6]
    徐峰, 王丹, 周小平. 添加金刚石颗粒的Ni60涂层组织和性能研究. 表面技术, 2016, 45(9): 100

    Xu F, Wang D, Zhou X P. Study on microstructure and properties of Ni60 coating by adding diamond particles. Surf Technol, 2016, 45(9): 100
    [7]
    李朋洋, 余新泉, 黄怡, 等. 火焰喷焊和等离子堆焊制备Ni60及Ni60–WC涂层的组织与性能. 机械工程材料, 2017, 41(10): 38

    Li P Y, Yu X Q, Huang Y, et al. Microstructure and properties of Ni60 and Ni60–WC coatings by flame spraying and plasma arc surfacing. Mater Mech Eng, 2017, 41(10): 38
    [8]
    赵志平, 李新勇. 重熔处理对火焰热喷涂Ni60A涂层件疲劳性能的影响. 粉末冶金技术, 2015, 33(4): 285

    Zhao Z P, Li X Y. The influence of remelting treatment on fatigue performance of flame thermal spraying components with Ni60A coating. Powder Metall Technol, 2015, 33(4): 285
    [9]
    Yong Y W, Fu W, Zhang X, et al. In-situ synthesis of WC/TaC reinforced nickel-based composite alloy coating by laser cladding. Rare Met Mater Eng, 2017, 46(11): 3176 DOI: 10.1016/S1875-5372(18)30024-9
    [10]
    Shu D, Li Z G, Zhang K, et al. In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding. Mater Lett, 2017, 195: 178 DOI: 10.1016/j.matlet.2017.02.076
    [11]
    杜际雨, 李方义, 鹿海洋, 等. 大气等离子喷涂NiCrBSi–Mo/Ni涂层中黏结层对NiCrBSi–Mo复合工作层性能的影响. 材料工程, 2017, 45(9): 86

    Du J Y, Li F Y, Lu H Y, et al. Effects of bond coating on NiCrBSi–Mo composite functional coating properties in plasma spraying NiCrBSi–Mo/Ni coating. J Mater Eng, 2017, 45(9): 86
    [12]
    Liu J W, Bolot R, Costil S, et al. Transient thermal and mechanical analysis of NiCrBSi coatings manufactured by hybrid plasma spray process with in-situ laser remelting. Surf Coat Technol, 2016, 292: 132 DOI: 10.1016/j.surfcoat.2016.03.031
    [13]
    Chen J B, Dong Y C, Wan L N, et al. Effect of induction remelting on the microstructure and properties of in situ TiN-reinforced NiCrBSi composite coatings. Surf Coat Technol, 2018, 340: 159 DOI: 10.1016/j.surfcoat.2018.02.024
    [14]
    曹佑青, 蒋朋, 吕玉廷, 等. 有氧烧结Ni60–WC/Cr12MoV双金属复合材料的组织和性能. 热加工工艺, 2012, 41(8): 109

    Cao Y Q, Jiang P, Lü Y T, et al. Microstructure and property of Ni60–WC/Cr12MoV bimetallic composite prepared by aerobic sintering. Hot Working Technol, 2012, 41(8): 109
    [15]
    丁小芹, 韩小云, 游航, 等. 烧结方法对Ni60B自熔合金组织与性能的影响. 金属热处理, 2010, 35(7): 47

    Ding X Q, Han X Y, You H, et al. Effect of sintering methods on microstructure and properties of Ni60B self-fluxing alloy. Heat Treat Met, 2010, 35(7): 47
  • Related Articles

    [1]WANG Jie, HUANG Hailiang, ZHANG Hua, ZHANG Shangzhou, ZHOU Xin, JIANG Liang. Microstructure evolution of FGH96 alloys during heat treatment[J]. Powder Metallurgy Technology, 2023, 41(5): 393-401. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050008
    [2]LIU Guangxu, WANG Xiaofeng, YANG Jie, ZOU Jinwen. Effect of local interference on the surface microstructure of FGH96 alloys in quenching process[J]. Powder Metallurgy Technology, 2023, 41(2): 143-148. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090012
    [3]LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. DOI: 10.19591/j.cnki.cn11–1974/tf.2021040006
    [4]TIAN Gao-feng, CHEN Yang, WANG Yu. Research on microstructure characterization in residual dendrite zones of FGH96 alloy with gradient microstructure[J]. Powder Metallurgy Technology, 2018, 36(6): 403-408. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.001
    [5]WANG Yan, GUO Chun, KONG De-cheng, ZHAO Zhen-jiang, WANG Li, DONG Chao-fang. Microstructures and corrosion failure analysis of zinc anode[J]. Powder Metallurgy Technology, 2018, 36(5): 348-354. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.005
    [6]ZHOU Lei, WANG Yu, ZOU Jin-wen. Effect of carbon content on the microstructure and mechanical properties of powder metallurgy superalloy FGH96[J]. Powder Metallurgy Technology, 2017, 35(1): 46-52. DOI: 10.3969/j.issn.1001-3784.2017.01.008
    [7]Wang Xiaona, Li Fuguo, Liu Yuhong. Deformation and microstructural evolution in alloy FGH96 under isothermal forging conditions[J]. Powder Metallurgy Technology, 2008, 26(3): 196-200,233.
    [8]Wang Zhanhong, Wang Li, Wu Yanqing, Qu Xuanhui. Tensile test and SEM in situ fatigue failure analysis of beryllium-aluminum alloy at room temperature[J]. Powder Metallurgy Technology, 2007, 25(3): 163-166. DOI: 10.3321/j.issn:1001-3784.2007.03.001
    [9]Failure Analyzing of Self-lubrication Material[J]. Powder Metallurgy Technology, 2001, 19(5): 270-272. DOI: 10.3321/j.issn:1001-3784.2001.05.004
    [10]THE ANALYSIS OF MICROSTRUCTURE AND INCLUSION OF FGH96—POWDER OF 750℃SUPERALLOY[J]. Powder Metallurgy Technology, 2001, 19(2): 70-73. DOI: 10.3321/j.issn:1001-3784.2001.02.002
  • Cited by

    Periodical cited type(2)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谭欣宇,李鹏,马月婷,黄立兵,吴宝生,董红刚. FGH98粉末高温合金瞬时液相扩散焊接头组织和性能. 焊接学报. 2023(11): 96-103+134 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (567) PDF downloads (60) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return