Citation: | CHEN Jian, HUANG Yi-ping, ZHU Rui, ZHOU Li, DENG Xin, WU Shang-hua, LIU Bing-yao. Microstructure of ultrafine graded cemented carbides with cubic rich surface[J]. Powder Metallurgy Technology, 2021, 39(2): 117-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010005 |
[1] |
García J, Ciprés V C, Blomqvist A, et al. Cemented carbide microstructures: a review. Int J Refract Met Hard Mater, 2019, 80: 40 DOI: 10.1016/j.ijrmhm.2018.12.004
|
[2] |
Van der Merwe R, Sacks N. Effect of TaC and TiC on the friction and dry sliding wear of WC−6wt.% Co cemented carbides against steel counterfaces. Int J Refract Met Hard Mater, 2013, 41: 94 DOI: 10.1016/j.ijrmhm.2013.02.009
|
[3] |
Konyashin I, Farag S, Ries B, et al. WC−Co−Re cemented carbides: Structure, properties and potential applications. Int J Refract Met Hard Mater, 2019, 78: 247 DOI: 10.1016/j.ijrmhm.2018.10.001
|
[4] |
Espinosa L, Bonache V, Salvador M D. Friction and wear behaviour of WC−Co−Cr3C2−VC cemented carbides obtained from nanocrystalline mixtures. Wear, 2011, 272(1): 62 DOI: 10.1016/j.wear.2011.07.012
|
[5] |
Zhang G, Yang X, Yang Z, et al. Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis. Int J Miner Metall Mater, 2020, 27: 244 DOI: 10.1007/s12613-019-1892-8
|
[6] |
Hei H, Ma J, Li X, et al. Preparation and performance of chemical vapor deposition diamond coatings synthesized onto the cemented carbide micro-end mills with a SiC interlayer. Surf Coat Technol, 2015, 261: 272 DOI: 10.1016/j.surfcoat.2014.11.019
|
[7] |
Parihar R S, Setti S G, Sahu R K. Effect of sintering parameters on microstructure and mechanical properties of self-lubricating functionally graded cemented tungsten carbide. J Manuf Process, 2019, 45: 498 DOI: 10.1016/j.jmapro.2019.07.025
|
[8] |
Liu Y, Li X, Zhou J, et al. Effects of Y2O3 addition on microstructures and mechanical properties of WC−Co functionally graded cemented carbides. Int J Miner Metall Mater, 2015, 50: 53
|
[9] |
Zhang W, Du Y, Chen W, et al. CSUDDCC1—a diffusion database for multicomponent cemented carbides. Int J Miner Metall Mater, 2014, 43: 164
|
[10] |
Liu K, Wang Z, Yin Z, et al. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC−Co cemented carbide sintered by spark plasma sintering. Ceram Int, 2018, 44(15): 18711 DOI: 10.1016/j.ceramint.2018.07.100
|
[11] |
吕小军, 陈明, 杨青青, 等. 真空/压力烧结淬火一体化装置的研究. 硬质合金, 2013, 30(3): 167
Lü X J, Chen M, Yang Q Q, et al. Research on integrated vacuum/pressure sintering and quenching equipment. Cement Carb, 2013, 30(3): 167
|
[12] |
Garcia J, Pitonak R. The role of cemented carbide functionally graded outer-layers on the wear performance of coated cutting tools. Int J Refract Met Hard Mater, 2013, 36: 52 DOI: 10.1016/j.ijrmhm.2011.12.007
|
[13] |
Chen H, Yang Q, Yang J, et al. Effects of VC/Cr3C2 on WC grain morphologies and mechanical properties of WC-6wt.% Co cemented carbides. J Alloys Compd, 2017, 714: 245 DOI: 10.1016/j.jallcom.2017.04.187
|
[14] |
Yildiz B K, Yilmaz H, Tür Y K. Influence of nickel addition on the microstructure and mechanical properties of Al2O3-5vol% ZrO2 ceramic composites prepared via precipitation method. Int J Miner Metall Mater, 2019, 26: 908 DOI: 10.1007/s12613-019-1792-y
|
[15] |
Okada K, Osada A. Microstructural study on the grain growth inhibition of VC-doped WC−Co cemented carbides. Int J Refract Met Hard Mater, 2017, 62: 149 DOI: 10.1016/j.ijrmhm.2016.06.009
|
[16] |
Peng Y, Du Y, Zhou P, et al. CSUTDCC1—a thermodynamic database for multicomponent cemented carbides. Int J Refract Met Hard Mater, 2014, 42: 57 DOI: 10.1016/j.ijrmhm.2013.10.005
|