Citation: | WANG Xiao-yu, JIANG Wei, ZHU Bing, SUN Yuan-tao, XIANG Bo, HUANG Zhong-yue, YANG Shuang-gen, ZU Fang-qiu. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method[J]. Powder Metallurgy Technology, 2022, 40(1): 53-59. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010008 |
[1] |
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457 DOI: 10.1126/science.1158899
|
[2] |
DiSalvo F J. Thermoelectric cooling and power generation. Science, 1999, 285(5428): 703 DOI: 10.1126/science.285.5428.703
|
[3] |
Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials. Adv Mater, 2007, 19(8): 1043 DOI: 10.1002/adma.200600527
|
[4] |
Ginting D, Lin C C, Lydia R, et al. High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95−x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation. Acta Mater, 2017, 131: 98
|
[5] |
Takagiwa Y, Pei Y, Pomrehn G, et al. Dopants effect on the band structure of PbTe thermoelectric material. Appl Phys Lett, 2012, 101(9): 092102 DOI: 10.1063/1.4748363
|
[6] |
Basu R, Bhattacharya S, Bhatt R, et al. Improved thermoelectric properties of Se-doped n-type PbTe1−xSex (0≤x≤1). J Electron Mater, 2013, 42(7): 2292 DOI: 10.1007/s11664-013-2645-5
|
[7] |
Ohno S, Imasato K, Anand S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule, 2018, 2(1): 141 DOI: 10.1016/j.joule.2017.11.005
|
[8] |
Gelbstein Y, Davidow J, Girard S N, et al. Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance. Adv Energy Mater, 2013, 3(6): 815
|
[9] |
Kim Y M, Lydia R, Kim J H, et al. Enhancement of thermoelectric properties in liquid-phase sintered Te-excess bismuth antimony tellurides prepared by hot-press sintering. Acta Mater, 2017, 135: 297 DOI: 10.1016/j.actamat.2017.06.036
|
[10] |
Hor Y S, Richardella A, Roushan P, et al. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B, 2009, 79(19): 195208 DOI: 10.1103/PhysRevB.79.195208
|
[11] |
Zhu T, Hu L, Zhao X, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci, 2016, 3(7): 1600004 DOI: 10.1002/advs.201600004
|
[12] |
Zhu T, Liu Y, Fu C, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 2017, 29(14): 1605884 DOI: 10.1002/adma.201605884
|
[13] |
Hu L, Wu H, Zhu T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type Bismuth-Telluride-based solid solutions. Adv Energy Mater, 2015, 5(17): 1500411 DOI: 10.1002/aenm.201500411
|
[14] |
Hu L P, Zhu T J, Wang Y G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater, 2014, 6(2): e88 DOI: 10.1038/am.2013.86
|
[15] |
Zhai R, Hu L, Wu H, et al. Enhancing thermoelectric performance of n-type hot deformed bismuth-telluride-based solid solutions by nonstoichiometry-mediated intrinsic point defects. ACS Appl Mater Interfaces, 2017, 9(34): 28577 DOI: 10.1021/acsami.7b08537
|
[16] |
Hu L, Zhu T, Liu X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater, 2014, 24(33): 5211 DOI: 10.1002/adfm.201400474
|
[17] |
Xu Z J, Hu L P, Ying P J, et al. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater, 2015, 84: 385 DOI: 10.1016/j.actamat.2014.10.062
|
[18] |
Zhu B, Huang Z Y, Wang X Y, et al. Attaining ultrahigh thermoelectric performance of direction-solidified bulk n-type Bi2Te24Se0.6 via its liquid state treatment. Nano Energy, 2017, 42: 8
|
[19] |
Jiang J, Chen L, Bai S, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering. Mater Sci Eng B, 2005, 117(3): 334 DOI: 10.1016/j.mseb.2005.01.002
|
[20] |
Mun H, Choi S M, Lee K H, et al. Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride. ChemSusChem, 2015, 8(14): 2312 DOI: 10.1002/cssc.201403485
|
[21] |
Pei Y, Lalonde A, Iwanaga S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci, 2011, 4(6): 2085 DOI: 10.1039/c0ee00456a
|
[22] |
Chen Z, Zhang X, Pei Y. Manipulation of phonon transport in thermoelectrics. Adv Mater, 2018, 30(17): 1705617 DOI: 10.1002/adma.201705617
|
[23] |
Lostak P, Novotny R, Kroutil J, et al. Optical properties of Sb2‒xInxTe3 single crystals. Phys Status Solidi A, 1987, 104(2): 841 DOI: 10.1002/pssa.2211040238
|
[24] |
Chen Z, Jian Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater, 2017, 29(23): 1606768 DOI: 10.1002/adma.201606768
|
[25] |
Tan G, Stoumpos C C, Wang S, et al. Subtle roles of Sb and S in regulating the thermoelectric properties of N-type PbTe to high performance. Adv Energy Mater, 2017, 7(18): 1700099 DOI: 10.1002/aenm.201700099
|
[26] |
Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414 DOI: 10.1038/nature11439
|
[27] |
Lotgering F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J Inorg Nucl Chem, 1959, 9(2): 113 DOI: 10.1016/0022-1902(59)80070-1
|
[28] |
Ioffe A F. Semiconductor Thermoelements and Thermoelectric Cooling. London: Infosearch Limited, 1957
|
[29] |
Wang X Y, Wang H J, Xiang B, et al. Thermoelectric performance of Sb2Te3-based alloys is improved by introducing PN junctions. ACS Appl Mater Interfaces, 2018, 10(27): 23277 DOI: 10.1021/acsami.8b01719
|
[30] |
Wang S, Sun Y, Yang J, et al. High thermoelectric performance in Te-free (Bi, Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy Environ Sci, 2016, 9(11): 3436 DOI: 10.1039/C6EE02674E
|
[31] |
Hong M, Chen Z G, Yang L, et al. Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J Mater Chem A, 2017, 5(21): 10713 DOI: 10.1039/C7TA02677C
|
[32] |
Paul B, V A K, Banerji P. Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers. J Appl Phys, 2010, 108(6): 064322 DOI: 10.1063/1.3488621
|
[33] |
Zhang C, De La Mata M, Li Z, et al. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy, 2016, 30: 630 DOI: 10.1016/j.nanoen.2016.10.056
|
[34] |
Zhang Q, Ai X, Wang L, et al. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater, 2015, 25(6): 966 DOI: 10.1002/adfm.201402663
|
1. |
苏紫珊,蔡新志,熊平尚,童培云,朱刘. 高择优取向P型Bi_2Te_3基材料制备及性能. 粉末冶金技术. 2025(01): 79-85 .
![]() |