AdvancedSearch
WANG Xiao-yu, JIANG Wei, ZHU Bing, SUN Yuan-tao, XIANG Bo, HUANG Zhong-yue, YANG Shuang-gen, ZU Fang-qiu. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method[J]. Powder Metallurgy Technology, 2022, 40(1): 53-59. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010008
Citation: WANG Xiao-yu, JIANG Wei, ZHU Bing, SUN Yuan-tao, XIANG Bo, HUANG Zhong-yue, YANG Shuang-gen, ZU Fang-qiu. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method[J]. Powder Metallurgy Technology, 2022, 40(1): 53-59. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010008

Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method

More Information
  • SiC particles in the different volume fraction were mixed into Bi0.5Sb1.5Te3+5%Te alloy powders (mass fraction) prepared by the pulverizing method. The mixed powders were sintered into the blocks by spark plasma sintering (SPS) method. The microstructure and thermoelectric properties of these block samples were investigated. The results show that, with the increase of SiC volume fraction, the orientation of the bulks is weakened, the microstructure is refined, the carrier concentration increases, and the mobility decreases. Due to the weakened orientation and the refined microstructure, the scattering of phonons is enhanced, leading to a reduced lattice thermal conductivity. However, due to the deterioration of the electrical properties for the blocks, the dimensionless thermoelectric value (ZT) of the bulks with SiC has no improvement. When the volume fraction of SiC is 0.40%, the block samples show the best thermoelectric performance with ZT = ~0.81 at 322 K.
  • [1]
    Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457 DOI: 10.1126/science.1158899
    [2]
    DiSalvo F J. Thermoelectric cooling and power generation. Science, 1999, 285(5428): 703 DOI: 10.1126/science.285.5428.703
    [3]
    Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials. Adv Mater, 2007, 19(8): 1043 DOI: 10.1002/adma.200600527
    [4]
    Ginting D, Lin C C, Lydia R, et al. High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95−x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation. Acta Mater, 2017, 131: 98
    [5]
    Takagiwa Y, Pei Y, Pomrehn G, et al. Dopants effect on the band structure of PbTe thermoelectric material. Appl Phys Lett, 2012, 101(9): 092102 DOI: 10.1063/1.4748363
    [6]
    Basu R, Bhattacharya S, Bhatt R, et al. Improved thermoelectric properties of Se-doped n-type PbTe1−xSex (0≤x≤1). J Electron Mater, 2013, 42(7): 2292 DOI: 10.1007/s11664-013-2645-5
    [7]
    Ohno S, Imasato K, Anand S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule, 2018, 2(1): 141 DOI: 10.1016/j.joule.2017.11.005
    [8]
    Gelbstein Y, Davidow J, Girard S N, et al. Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance. Adv Energy Mater, 2013, 3(6): 815
    [9]
    Kim Y M, Lydia R, Kim J H, et al. Enhancement of thermoelectric properties in liquid-phase sintered Te-excess bismuth antimony tellurides prepared by hot-press sintering. Acta Mater, 2017, 135: 297 DOI: 10.1016/j.actamat.2017.06.036
    [10]
    Hor Y S, Richardella A, Roushan P, et al. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B, 2009, 79(19): 195208 DOI: 10.1103/PhysRevB.79.195208
    [11]
    Zhu T, Hu L, Zhao X, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci, 2016, 3(7): 1600004 DOI: 10.1002/advs.201600004
    [12]
    Zhu T, Liu Y, Fu C, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 2017, 29(14): 1605884 DOI: 10.1002/adma.201605884
    [13]
    Hu L, Wu H, Zhu T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type Bismuth-Telluride-based solid solutions. Adv Energy Mater, 2015, 5(17): 1500411 DOI: 10.1002/aenm.201500411
    [14]
    Hu L P, Zhu T J, Wang Y G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater, 2014, 6(2): e88 DOI: 10.1038/am.2013.86
    [15]
    Zhai R, Hu L, Wu H, et al. Enhancing thermoelectric performance of n-type hot deformed bismuth-telluride-based solid solutions by nonstoichiometry-mediated intrinsic point defects. ACS Appl Mater Interfaces, 2017, 9(34): 28577 DOI: 10.1021/acsami.7b08537
    [16]
    Hu L, Zhu T, Liu X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater, 2014, 24(33): 5211 DOI: 10.1002/adfm.201400474
    [17]
    Xu Z J, Hu L P, Ying P J, et al. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater, 2015, 84: 385 DOI: 10.1016/j.actamat.2014.10.062
    [18]
    Zhu B, Huang Z Y, Wang X Y, et al. Attaining ultrahigh thermoelectric performance of direction-solidified bulk n-type Bi2Te24Se0.6 via its liquid state treatment. Nano Energy, 2017, 42: 8
    [19]
    Jiang J, Chen L, Bai S, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering. Mater Sci Eng B, 2005, 117(3): 334 DOI: 10.1016/j.mseb.2005.01.002
    [20]
    Mun H, Choi S M, Lee K H, et al. Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride. ChemSusChem, 2015, 8(14): 2312 DOI: 10.1002/cssc.201403485
    [21]
    Pei Y, Lalonde A, Iwanaga S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci, 2011, 4(6): 2085 DOI: 10.1039/c0ee00456a
    [22]
    Chen Z, Zhang X, Pei Y. Manipulation of phonon transport in thermoelectrics. Adv Mater, 2018, 30(17): 1705617 DOI: 10.1002/adma.201705617
    [23]
    Lostak P, Novotny R, Kroutil J, et al. Optical properties of Sb2‒xInxTe3 single crystals. Phys Status Solidi A, 1987, 104(2): 841 DOI: 10.1002/pssa.2211040238
    [24]
    Chen Z, Jian Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater, 2017, 29(23): 1606768 DOI: 10.1002/adma.201606768
    [25]
    Tan G, Stoumpos C C, Wang S, et al. Subtle roles of Sb and S in regulating the thermoelectric properties of N-type PbTe to high performance. Adv Energy Mater, 2017, 7(18): 1700099 DOI: 10.1002/aenm.201700099
    [26]
    Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414 DOI: 10.1038/nature11439
    [27]
    Lotgering F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J Inorg Nucl Chem, 1959, 9(2): 113 DOI: 10.1016/0022-1902(59)80070-1
    [28]
    Ioffe A F. Semiconductor Thermoelements and Thermoelectric Cooling. London: Infosearch Limited, 1957
    [29]
    Wang X Y, Wang H J, Xiang B, et al. Thermoelectric performance of Sb2Te3-based alloys is improved by introducing PN junctions. ACS Appl Mater Interfaces, 2018, 10(27): 23277 DOI: 10.1021/acsami.8b01719
    [30]
    Wang S, Sun Y, Yang J, et al. High thermoelectric performance in Te-free (Bi, Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy Environ Sci, 2016, 9(11): 3436 DOI: 10.1039/C6EE02674E
    [31]
    Hong M, Chen Z G, Yang L, et al. Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J Mater Chem A, 2017, 5(21): 10713 DOI: 10.1039/C7TA02677C
    [32]
    Paul B, V A K, Banerji P. Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers. J Appl Phys, 2010, 108(6): 064322 DOI: 10.1063/1.3488621
    [33]
    Zhang C, De La Mata M, Li Z, et al. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy, 2016, 30: 630 DOI: 10.1016/j.nanoen.2016.10.056
    [34]
    Zhang Q, Ai X, Wang L, et al. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater, 2015, 25(6): 966 DOI: 10.1002/adfm.201402663
  • Cited by

    Periodical cited type(1)

    1. 苏紫珊,蔡新志,熊平尚,童培云,朱刘. 高择优取向P型Bi_2Te_3基材料制备及性能. 粉末冶金技术. 2025(01): 79-85 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (398) PDF downloads (186) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return