AdvancedSearch
ZHANG Dongliang, SONG Jieguang, LIAO Jiangping, YANG Xueqing, ZENG Qing, WEN Hongbin, HUANG Rong, XIANG Yun. Preparing powder raw materials of permeable bricks by ball milling using electric porcelain wastes[J]. Powder Metallurgy Technology, 2023, 41(1): 84-89. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020001
Citation: ZHANG Dongliang, SONG Jieguang, LIAO Jiangping, YANG Xueqing, ZENG Qing, WEN Hongbin, HUANG Rong, XIANG Yun. Preparing powder raw materials of permeable bricks by ball milling using electric porcelain wastes[J]. Powder Metallurgy Technology, 2023, 41(1): 84-89. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020001

Preparing powder raw materials of permeable bricks by ball milling using electric porcelain wastes

More Information
  • Corresponding author:

    SONG Jieguang, E-mail: sjg825@163.com

  • Received Date: August 30, 2020
  • Accepted Date: August 30, 2020
  • Available Online: February 22, 2023
  • The influence of ball milling process on the ball milling efficiency of electric porcelain wastes was investigated, and the permeable bricks were prepared by using the ball milled electric porcelain waste powders as the raw materials. The results show that, the particle size of electric porcelain waste powders gradually decreases with the extension of ball milling time, and firstly decreases and then increases with the increase of ball milling speed, indicating that the ball milling efficiency first increases and then decreases. Due to the high hardness of electric porcelain waste, the particle size of the powders decreases with the increase of the large ball proportion in the milling ball. After the decrease of the middle ball proportion, the particle size of the powders increases with the increase of the large ball proportion. When the charge amount is less than 35%, the particle size of the electric porcelain waste powders gradually increases, and the ball milling efficiency gradually decreases. When the charge amount is more than 35%, the increasing rate of particle size is accelerated, and the ball milling efficiency is rapidly lowered. By optimizing the ball milling process of electric porcelain wastes and considering the comprehensive performance of the permeable bricks, the suitable ball milling time is 20 h, the ball milling speed is 140 r·min‒1, the ratio of large, medium, and small stage of porcelain ball is 5:3:2, and the charge amount is 35%. The median diameter of the electric porcelain waste powders after ball milling is 4.1 μm, the sieve residue is 15%. The permeable bricks with the compressive strength of 6.1 MPa and the permeability coefficient of 0.028 cm·s‒1 are prepared by using the ball milled electric porcelain waste powders as the main raw materials.

  • [1]
    宫云霞. 章村土提高电瓷绝缘子高温荷重性能的研究. 现代技术陶瓷, 2016, 37(2): 145 DOI: 10.16253/j.cnki.37-1226/tq.2016.02.006

    Gong Y X. Improvement of high temperature loading capacity of porcelain insulators by adding Zhangcun clay. Adv Ceram, 2016, 37(2): 145 DOI: 10.16253/j.cnki.37-1226/tq.2016.02.006
    [2]
    Pu Z H, Xiong Y Y, Wu T T, et al. Design and construction of a new insulator detection robot for application in 500  kV strings: Electric field analysis and field testing. Electron Power Syst Res, 2019, 173: 48 DOI: 10.1016/j.jpgr.2019.03.025
    [3]
    贺嘉伟, 马爱琼. 利用电瓷废料原位合成莫来石陶瓷. 材料科学与工程学报, 2016, 34(1): 123

    He J W, Ma A Q. In-situ synthesis of mullite ceramics by electroceramics waste. J Mater Sci Eng, 2016, 34(1): 123
    [4]
    王前, 杜庆洋, 姚奇恒, 等. 建陶厂废料综合利用制备多孔保温材料研究. 非金属矿, 2015, 38(5): 31

    Wang Q, Du Q Y, Yao Q H, et al. Study on preparation of porous thermal insulation materials by comprehensive utilization of tile industry waste. Non-Met Mines, 2015, 38(5): 31
    [5]
    Keshavarz Z, Mostofinejad D. Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Constr Build Mater, 2019, 195: 218 DOI: 10.1016/j.conbuildmat.2018.11.033
    [6]
    杨长毅, 刘允中, 余开斌. 球磨时间对石墨烯/ODS铜基复合材料组织与性能的影响. 粉末冶金材料科学与工程, 2018, 23(3): 281 DOI: 10.3969/j.issn.1673-0224.2018.03.008

    Yang C Y, Liu Y Z, Yu K B. Effects of ball milling time on microstructures and properties of graphene/ODS copper composite materials. Mater Sci Eng Powder Metall, 2018, 23(3): 281 DOI: 10.3969/j.issn.1673-0224.2018.03.008
    [7]
    宋杰光, 王瑞花, 李世斌, 等. 工业球磨制备石英砂粉体球磨介质的磨损研究. 硅酸盐通报, 2015, 34(增刊 1): 66 DOI: 10.16552/j.cnki.issn1001-1625.2015.s1.015

    Song J G, Wang R H, Li S B, et al. Wear of ball milling media for preparing quartz sands powder in the industry. Bull Chin Ceram Soc, 2015, 34(Suppl 1): 66 DOI: 10.16552/j.cnki.issn1001-1625.2015.s1.015
    [8]
    Matej B. Ball milling of eggshell waste as a green and sustainable approach: A review. Adv Colloid Interface Sci, 2018, 256: 256 DOI: 10.1016/j.cis.2018.04.001
    [9]
    李会新, 李姝贤, 张辉, 等. 膨胀石墨在球磨期间的微观结构演化及减摩性能. 非金属矿, 2018, 41(3): 103 DOI: 10.3969/j.issn.1000-8098.2018.03.034

    Li H X, Li S X, Zhang H, et al. Nanostructural evolution and antifriction effect of ball-milled expanded graphite. Non-Met Mines, 2018, 41(3): 103 DOI: 10.3969/j.issn.1000-8098.2018.03.034
    [10]
    Singh Y P, Tanvar H, Gulshan K, et al. Investigation of planetary ball milling of sericite for potash recovery. Powder Technol, 2019, 351: 115 DOI: 10.1016/j.powtec.2019.04.013
    [11]
    杨绍斌, 董伟, 沈丁, 等. 球磨时间对天然石墨微观结构和可逆储钠性能的影响. 硅酸盐通报, 2016, 35(4): 1080 DOI: 10.16552/j.cnki.issn1001-1625.2016.04.016

    Yang S B, Dong W, Shen D, et al. Effect of ball milling time on the microstructure and reversible storage properties of natural graphite. Bull Chin Ceram Soc, 2016, 35(4): 1080 DOI: 10.16552/j.cnki.issn1001-1625.2016.04.016
    [12]
    何逵, 库建刚. 磨矿介质形状对石英砂粉碎参数的影响. 中国粉体技术, 2019, 25(5): 29 DOI: 10.13732/j.issn.1008-5548.2019.05.005

    He K, Ku J G. Grinding parameters of quartz sand with shape of medium. China Powder Sci Technol, 2019, 25(5): 29 DOI: 10.13732/j.issn.1008-5548.2019.05.005
    [13]
    范涛, 申珣, 王虎, 等. 球磨工艺对原位合成SiCp增强铜复合材料组织及性能的影响. 粉末冶金技术, 2016, 34(4): 264

    Fan T, Shen X, Wang H, et al. Effects of ball milling technology on microstructure and properties of SiCp/Cu composites prepared by in situ synthesis. Powder Metall Technol, 2016, 34(4): 264
    [14]
    徐建林, 郭强, 康昭, 等. 球磨时间和转速对球磨法制备纳米锑粉的影响. 材料热处理学报, 2013, 34(6): 18 DOI: 10.13289/j.issn.1009-6264.2013.06.006

    Xu J L, Guo Q, Kang Z, et al. Effect of milling time and milling rate on nano-Sb powders prepared by wet ball milling. Trans Mater Heat Treat, 2013, 34(6): 18 DOI: 10.13289/j.issn.1009-6264.2013.06.006
    [15]
    Song J G, Liu Y, He L, et al. Influence of ball milling process on the pinned effect of Al2O3/Al cermet composite powder. Key Eng Mater, 2018, 777: 80 DOI: 10.4028/www.scientific.net/KEM.777.80
    [16]
    孙嘉权. 钢球磨煤机超高铬磨球节能技术的应用. 冶金与材料, 2019, 39(2): 137 DOI: 10.3969/j.issn.1674-5183.2019.02.087

    Sun J Q. Application of energy saving technology for ultra-high chromium ball mill. Metall Mater, 2019, 39(2): 137 DOI: 10.3969/j.issn.1674-5183.2019.02.087
    [17]
    Nkwanyana S, Loveday B. Addition of pebbles to a ball-mill to improve grinding efficiency. Miner Eng, 2017, 103-104: 72 DOI: 10.1016/j.mineng.2016.09.004
    [18]
    宋杰光, 王芳, 吴世斌, 等. 超细石英砂粉体的机械球磨工艺优化研究. 陶瓷学报, 2011, 32(2): 192 DOI: 10.3969/j.issn.1000-2278.2011.02.010

    Song J G, Wang F, Wu S B, et al. Technological optimization for mechanical ball milling of superfine quartz sand powder. J Ceram, 2011, 32(2): 192 DOI: 10.3969/j.issn.1000-2278.2011.02.010
    [19]
    Wang F, Wang X Q, Yang C, et al. Influence of loading quantity on the properties of quartz sand powder via mechanical ball milling method // Proceedings of the 2nd Annual International Conference on Advanced Material Engineering (AME 2016). Wuhan, 2016: 701
    [20]
    Yin Z X, Peng Y X, Zhu Z C, et al. Effect of mill speed and slurry filling on the charge dynamics by an instrumented ball. Adv Powder Technol, 2019, 30: 1611 DOI: 10.1016/j.apt.2019.05.009
  • Related Articles

    [1]YOU Yuanqi, LI Caiju, YANG Chao, XING Yuan, PENG Yanzhi, YI Jianhong. Effect of ball milling process on microstructure and mechanical properties of CNTs/Al composites[J]. Powder Metallurgy Technology, 2024, 42(4): 331-337, 345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100003
    [2]Preparation of TiB2-Co-Cr-W composite powder by high energy ball milling[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110020
    [3]LIU Gai-hua, ZHA Wu-sheng, CHEN Xiu-li, ZHANG Gui-yin. Study on preparation and photocatalytic properties of M/TiO2 composite film by two-step mechanical ball milling[J]. Powder Metallurgy Technology, 2021, 39(1): 49-53. DOI: 10.19591/j.cnki.cn11-1974/tf.2019070004
    [4]WU Kai-xia, ZHA Wu-sheng, TANG Xin-xin, ZHANG Shao-peng. Study on the preparation process of Ti coatings on ZrO2 balls by mechanical milling coating technology[J]. Powder Metallurgy Technology, 2019, 37(6): 444-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.007
    [5]ZHANG Xiao-ye, ZHONG Xiang, CHEN Xue-gang, HU Nan, WANG Jun, CHAI Zhi-yuan. Research on the process of grinding flake silver powder by ball-stirring mill[J]. Powder Metallurgy Technology, 2019, 37(2): 134-139. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.009
    [6]ZHANG Gui-yin, ZHA Wu-sheng, CHEN Xiu-li, YAN Jun. Application of mechanical ball-milling technology in material preparation[J]. Powder Metallurgy Technology, 2018, 36(4): 315-318. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
    [7]Wang Ying, Wang Erde, Yu Yang. Research on efficiency of amorphous and nanocrystal line Nd2Fe14B/α-Fe powder prepared by two milling methods[J]. Powder Metallurgy Technology, 2006, 24(3): 213-217. DOI: 10.3321/j.issn:1001-3784.2006.03.012
    [8]Liu Xinkuan, Ma Mingliang, Zhou Jingen. INFLUENCE OF HIGH ENERGY BALL MILLING AT HIGH TEMPERATURE ON CARBOTHERMAL REDUCTION OF ALUMINA[J]. Powder Metallurgy Technology, 1999, 17(2): 99-102.
    [9]Li Zhangxiu. CONTENT CHANGE OF INCLUSIONS Fe,Co AND Ni DURING BALL MILLING PROCESS INVESTIGATED BY FLAME ATOMIC ABSORPTION SPECTRUM[J]. Powder Metallurgy Technology, 1993, 11(4): 295-297.
    [10]Liang Guoxian, Wang Erde, Wang Yongqian, Li Zhimin. EFFECTS OF BALL MILLING CONDITIONS ON PARTICLE SIZES OF MECANICALLY ALLOYED POWDER[J]. Powder Metallurgy Technology, 1993, 11(1): 28-32.
  • Cited by

    Periodical cited type(3)

    1. 疏敏,刘鹏,黄秋良,霍冬亮. 球磨法制备高流动性铝合金粉末技术研究. 化学工程与装备. 2024(01): 38-40 .
    2. 陈丽芳,陈刚. 电瓷废料的加工及资源化利用现状. 佛山陶瓷. 2024(04): 1-4+14 .
    3. 张进,易世彬,杨建辉,顾磊. 复合生态型透水砖的制备与性能研究. 绿色建筑. 2024(06): 167-174 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (230) PDF downloads (32) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return