Loading [MathJax]/jax/output/SVG/jax.js
AdvancedSearch
LI Ye, LIU Shi-feng, WANG Jian-zhong, WANG Li-qing, AO Qing-bo, MA Jun, WU Chen, TANG Hui-ping. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys[J]. Powder Metallurgy Technology, 2021, 39(4): 326-331. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050006
Citation: LI Ye, LIU Shi-feng, WANG Jian-zhong, WANG Li-qing, AO Qing-bo, MA Jun, WU Chen, TANG Hui-ping. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys[J]. Powder Metallurgy Technology, 2021, 39(4): 326-331. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050006

Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys

More Information
  • Corresponding author:

    LI Ye, E-mail: liye_870416@163.com

  • Received Date: May 12, 2020
  • Available Online: July 25, 2021
  • Ti−6Al−3Nb−2Zr−1Mo alloys were prepared by forging and annealing at 980 ℃. The microstructure and mechanical properties of the annealed alloys on the different sections were studied by scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD). The results show that, compared with the forged alloys, the content of α phase in the annealed Ti−6Al−3Nb−2Zr−1Mo alloys decreases, and the content of the metastable β phase increases. During the cooling in the air, the metastable β phase is transformed into the secondary α phase and a small amount of β phase. After annealing at 980 ℃, α-Ti in Ti−6Al−3Nb−2Zr−1Mo alloys exhibits the texture types of RD//[ˉ12ˉ10] and FD//[0001], where RD is the forging compression direction (forging direction), and FD is the free extension direction of forging. The fracture morphology of Ti−6Al−3Nb−2Zr−1Mo alloys along the different tensile direction is mainly ductile fracture, and the fracture mode shows the micropore aggregation fracture. When the annealed alloys are stretched in RD direction, the size of the dimple is larger, and the corresponding elongation is superior to that in any other direction.
  • [1]
    Faller K, Frose F H. The use of titanium in family automobiles: Current trends. JOM, 2001, 53(4): 27 DOI: 10.1007/s11837-001-0143-3
    [2]
    Nyakana S L, Fanning J C, Boyer R R. Quick reference guide for β titanium alloys in the 00s. J Mater Eng Perform, 2005, 14(6): 799 DOI: 10.1361/105994905X75646
    [3]
    Boyer R R. Attributes, characteristics, and applications of titanium and its alloys. JOM, 2010, 62(5): 21 DOI: 10.1007/s11837-010-0071-1
    [4]
    邹武装. “海洋金属”钛的特性及应用. 世界有色金属, 2014(8): 28

    Zhou W Z. Characteristics and application of titanium as "Marine metal". World Nonferrous Met, 2014(8): 28
    [5]
    徐鲁杰, 程德彬. 船用钛合金及钛合金粉末冶金技术. 材料开发与应用, 2009, 24(2): 68 DOI: 10.3969/j.issn.1003-1545.2009.02.017

    Xu L J, Cheng D B. Ship Ti alloy and Ti alloy powder metallurgy technology. Dev Appl Mater, 2009, 24(2): 68 DOI: 10.3969/j.issn.1003-1545.2009.02.017
    [6]
    胡耀君. 发展中的船用钛合金. 钛工业进展, 1998(4): 1

    Hu Y J. Developing marine titanium alloy. Titanium Ind Prog, 1998(4): 1
    [7]
    李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景. 钛工业进展, 2004, 21(5): 19 DOI: 10.3969/j.issn.1009-9964.2004.05.005

    Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys. Titanium Ind Prog, 2004, 21(5): 19 DOI: 10.3969/j.issn.1009-9964.2004.05.005
    [8]
    杜永勤, 王建平, 王书华, 等. 新型Ti−6Al−3Nb−2Zr−1Mo(Ti80)合金焊接工艺研究. 石油化工设备, 2015, 44(2): 67 DOI: 10.3969/j.issn.1000-7466.2015.02.015

    Du Y Q, Wang J P, Wang S H, et al. Welding procedure research of new titanium alloy Ti−6Al−3Nb−2Zr−1Mo (Ti80). Petro-Chem Equip, 2015, 44(2): 67 DOI: 10.3969/j.issn.1000-7466.2015.02.015
    [9]
    黄瑜, 汤慧萍, 贾文鹏, 等. 元素添加方式对Ti−6Al−3Nb−2Zr−1Mo合金性能的影响. 稀有金属材料与工程, 2011, 40(12): 2227

    Huang Y, Tang H P, Jia W P, et al. Influence of element addition ways on the performance of Ti−6Al−3Nb−2Zr−1Mo alloy. Rare Met Mater Eng, 2011, 40(12): 2227
    [10]
    Guo K, Meng K, Miao D, et al. Effect of annealing on microstructure and tensile properties of skew hot rolled Ti–6Al–3Nb–2Zr–1Mo alloy tube. Mater Sci Eng A, 2019, 766: 138346 DOI: 10.1016/j.msea.2019.138346
    [11]
    赵瑶, 贺跃辉, 江垚, 等. 粉末冶金Ti6Al4V合金的研究. 粉末冶金技术, 2009, 27(2): 108

    Zhao Y, He Y H, Jiang Y, et al. Research on preparation of Ti6Al4V alloy using powder metallurgy. Powder Metall Technol, 2009, 27(2): 108
    [12]
    Zhou D D, Zeng W D, Xu J W, et al. Evolution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure. Mater Charact, 2019, 151: 103 DOI: 10.1016/j.matchar.2019.03.005
    [13]
    董颐, 孙晓强. 中高碳量粉末锻造钢的综合性能. 粉末冶金技术, 1994, 12(1): 8

    Dong Y, Sun X Q. Combination mechanical properties of power forged steel with median and high carbon contents. Powder Metall Technol, 1994, 12(1): 8
    [14]
    Joane L M. Phase Diagrams of Binary Titanium Alloys. Ohio: ASM International, 1987
    [15]
    张旺峰, 曹春晓, 李兴无, 等. β热处理TA15钛合金对力学性能的影响规律. 稀有金属科学与工程, 2004, 33(7): 768

    Zhang W F, Cao C X, Li X W, et al. Effect of β heat treatment on mechanical properties of TA15 titanium alloy. Rare Met Mater Eng, 2004, 33(7): 768
    [16]
    陈才敏. 耐蚀Ti−Al−Nb−Zr−Mo合金的组成优化及组织性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2018

    Chen C M. Study on Composition Optimization and Microstructures and Properties of Corrosion Resistant Ti−Al−Nb−Zr−Mo Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2018
  • Related Articles

    [1]LIU Xinggang, LI Junpeng, MA Zhaojun, ZHANG Deliang. Microstructure and mechanical properties of solid-state recycled H11 steels after annealing[J]. Powder Metallurgy Technology, 2024, 42(6): 556-562. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120010
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]WANG Chengyang, LIU Jie, SUN Yanyan, CHANG Yang, DONG Di, ZHANG Haipeng, LIU Chengkai. Effect of annealing temperature on microstructure and properties of tungsten-rhenium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 523-527. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040008
    [6]XUE Jianrong, LIN Xiaohui, LI Yanchao, LIANG Jing, GAO Xuanqiao, ZHANG Xin, ZHANG Wen, LI Laiping. Effect of heat treatment temperature on microstructure and mechanical properties of Mo–14Re alloy tubes[J]. Powder Metallurgy Technology, 2023, 41(3): 263-267. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040011
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(2)

    1. 张镜,张凌峰,熊毅,姚怀,罗高丽,陈雪鹏. 激光高速应变对双态组织近α型Ti-6Al-3Nb-2Zr-1Mo合金组织与性能的影响. 塑性工程学报. 2025(01): 168-176 .
    2. 郭成,代巧,彭剑,李一帆,冯立斌. 基于小冲孔试验的工业纯钛塑性强化与损伤效应研究. 塑性工程学报. 2024(08): 189-198 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (413) PDF downloads (52) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return