Citation: | LI Ye, LIU Shi-feng, WANG Jian-zhong, WANG Li-qing, AO Qing-bo, MA Jun, WU Chen, TANG Hui-ping. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys[J]. Powder Metallurgy Technology, 2021, 39(4): 326-331. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050006 |
[1] |
Faller K, Frose F H. The use of titanium in family automobiles: Current trends. JOM, 2001, 53(4): 27 DOI: 10.1007/s11837-001-0143-3
|
[2] |
Nyakana S L, Fanning J C, Boyer R R. Quick reference guide for β titanium alloys in the 00s. J Mater Eng Perform, 2005, 14(6): 799 DOI: 10.1361/105994905X75646
|
[3] |
Boyer R R. Attributes, characteristics, and applications of titanium and its alloys. JOM, 2010, 62(5): 21 DOI: 10.1007/s11837-010-0071-1
|
[4] |
邹武装. “海洋金属”钛的特性及应用. 世界有色金属, 2014(8): 28
Zhou W Z. Characteristics and application of titanium as "Marine metal". World Nonferrous Met, 2014(8): 28
|
[5] |
徐鲁杰, 程德彬. 船用钛合金及钛合金粉末冶金技术. 材料开发与应用, 2009, 24(2): 68 DOI: 10.3969/j.issn.1003-1545.2009.02.017
Xu L J, Cheng D B. Ship Ti alloy and Ti alloy powder metallurgy technology. Dev Appl Mater, 2009, 24(2): 68 DOI: 10.3969/j.issn.1003-1545.2009.02.017
|
[6] |
胡耀君. 发展中的船用钛合金. 钛工业进展, 1998(4): 1
Hu Y J. Developing marine titanium alloy. Titanium Ind Prog, 1998(4): 1
|
[7] |
李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景. 钛工业进展, 2004, 21(5): 19 DOI: 10.3969/j.issn.1009-9964.2004.05.005
Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys. Titanium Ind Prog, 2004, 21(5): 19 DOI: 10.3969/j.issn.1009-9964.2004.05.005
|
[8] |
杜永勤, 王建平, 王书华, 等. 新型Ti−6Al−3Nb−2Zr−1Mo(Ti80)合金焊接工艺研究. 石油化工设备, 2015, 44(2): 67 DOI: 10.3969/j.issn.1000-7466.2015.02.015
Du Y Q, Wang J P, Wang S H, et al. Welding procedure research of new titanium alloy Ti−6Al−3Nb−2Zr−1Mo (Ti80). Petro-Chem Equip, 2015, 44(2): 67 DOI: 10.3969/j.issn.1000-7466.2015.02.015
|
[9] |
黄瑜, 汤慧萍, 贾文鹏, 等. 元素添加方式对Ti−6Al−3Nb−2Zr−1Mo合金性能的影响. 稀有金属材料与工程, 2011, 40(12): 2227
Huang Y, Tang H P, Jia W P, et al. Influence of element addition ways on the performance of Ti−6Al−3Nb−2Zr−1Mo alloy. Rare Met Mater Eng, 2011, 40(12): 2227
|
[10] |
Guo K, Meng K, Miao D, et al. Effect of annealing on microstructure and tensile properties of skew hot rolled Ti–6Al–3Nb–2Zr–1Mo alloy tube. Mater Sci Eng A, 2019, 766: 138346 DOI: 10.1016/j.msea.2019.138346
|
[11] |
赵瑶, 贺跃辉, 江垚, 等. 粉末冶金Ti6Al4V合金的研究. 粉末冶金技术, 2009, 27(2): 108
Zhao Y, He Y H, Jiang Y, et al. Research on preparation of Ti6Al4V alloy using powder metallurgy. Powder Metall Technol, 2009, 27(2): 108
|
[12] |
Zhou D D, Zeng W D, Xu J W, et al. Evolution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure. Mater Charact, 2019, 151: 103 DOI: 10.1016/j.matchar.2019.03.005
|
[13] |
董颐, 孙晓强. 中高碳量粉末锻造钢的综合性能. 粉末冶金技术, 1994, 12(1): 8
Dong Y, Sun X Q. Combination mechanical properties of power forged steel with median and high carbon contents. Powder Metall Technol, 1994, 12(1): 8
|
[14] |
Joane L M. Phase Diagrams of Binary Titanium Alloys. Ohio: ASM International, 1987
|
[15] |
张旺峰, 曹春晓, 李兴无, 等. β热处理TA15钛合金对力学性能的影响规律. 稀有金属科学与工程, 2004, 33(7): 768
Zhang W F, Cao C X, Li X W, et al. Effect of β heat treatment on mechanical properties of TA15 titanium alloy. Rare Met Mater Eng, 2004, 33(7): 768
|
[16] |
陈才敏. 耐蚀Ti−Al−Nb−Zr−Mo合金的组成优化及组织性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2018
Chen C M. Study on Composition Optimization and Microstructures and Properties of Corrosion Resistant Ti−Al−Nb−Zr−Mo Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2018
|
[1] | LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. DOI: 10.19591/j.cnki.cn11–1974/tf.2021040006 |
[2] | XIAO Ping-an, ZHAO Ji-kang, GU Jing-hong, LÜ Rong, GU Si-min, CHEN Yu-xiang, CHEN Huan. Fabrication technology upgrade of TiC-based high manganese steel bonded cemented carbide[J]. Powder Metallurgy Technology, 2021, 39(6): 545-548. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090010 |
[3] | YANG Jie, LIU Guang-xu, ZHANG Jing, WANG Wen-ying, WANG Xiao-feng, ZOU Jin-wen. Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface[J]. Powder Metallurgy Technology, 2021, 39(4): 311-318. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040005 |
[4] | Su Yixiang, Lei Yu, Xu Zhuang, Zhao Xiaoli, Guo Haifeng. Study on microstructure and properties of containing tellurium nickel-based alloy powder coating by non-vacuum fusion[J]. Powder Metallurgy Technology, 2013, 31(5): 323-327. DOI: 10.3969/j.issn.1001-3784.2013.05.001 |
[5] | Fan Anping, Xiao Ping'an, Li Chenkun, Xuan Cuihua, Qu Xuanhui. Research situation of TiC-based steel bonded carbide[J]. Powder Metallurgy Technology, 2013, 31(4): 298-303. DOI: 10.3969/j.issn.1001-3784.2013.04.011 |
[6] | Gong Wei, Li Hua, Zhu Yong. Effect of vanadium content on the microstructure and mechanical properties of (Ti,V)C35CrMo steel bonded carbide[J]. Powder Metallurgy Technology, 2009, 27(5): 336-340. |
[7] | Liu Junbo, Wang Limei, Liu Junhai, Huang Jihua. Influence of bonding phase on microstructure of steel bonded Himet synthesized in situ[J]. Powder Metallurgy Technology, 2007, 25(4): 266-270. |
[8] | Xiong Yongjun, Li Xibin, Liu Rutie, Zhao Fuan. Influences of high energy ball milling on microstructure and properties of a new steel bonded titanium carbide[J]. Powder Metallurgy Technology, 2006, 24(3): 187-191. DOI: 10.3321/j.issn:1001-3784.2006.03.006 |
[9] | Liu Junhai, Huang Jihua, Song Guixiang, Zhang Jiangang. A study on in situ reactive synthesis of TiC/heat resistant steel-steel bonded carbides[J]. Powder Metallurgy Technology, 2005, 23(3): 199-203. DOI: 10.3321/j.issn:1001-3784.2005.03.009 |
[10] | Wu Qiang, Hu Zhenhua, Xiao Jianzhong, Cui Kun. TEM RESEARCH ON MICROSTRUCTURES OF TiC-50Nb STEEL-BONDED CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1993, 11(3): 202-207. |