AdvancedSearch
LI Ye, LIU Shi-feng, WANG Jian-zhong, WANG Li-qing, AO Qing-bo, MA Jun, WU Chen, TANG Hui-ping. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys[J]. Powder Metallurgy Technology, 2021, 39(4): 326-331. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050006
Citation: LI Ye, LIU Shi-feng, WANG Jian-zhong, WANG Li-qing, AO Qing-bo, MA Jun, WU Chen, TANG Hui-ping. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys[J]. Powder Metallurgy Technology, 2021, 39(4): 326-331. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050006

Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys

More Information
  • Corresponding author:

    LI Ye, E-mail: liye_870416@163.com

  • Received Date: May 12, 2020
  • Available Online: July 25, 2021
  • Ti−6Al−3Nb−2Zr−1Mo alloys were prepared by forging and annealing at 980 ℃. The microstructure and mechanical properties of the annealed alloys on the different sections were studied by scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD). The results show that, compared with the forged alloys, the content of α phase in the annealed Ti−6Al−3Nb−2Zr−1Mo alloys decreases, and the content of the metastable β phase increases. During the cooling in the air, the metastable β phase is transformed into the secondary α phase and a small amount of β phase. After annealing at 980 ℃, α-Ti in Ti−6Al−3Nb−2Zr−1Mo alloys exhibits the texture types of RD//[20] and FD//[0001], where RD is the forging compression direction (forging direction), and FD is the free extension direction of forging. The fracture morphology of Ti−6Al−3Nb−2Zr−1Mo alloys along the different tensile direction is mainly ductile fracture, and the fracture mode shows the micropore aggregation fracture. When the annealed alloys are stretched in RD direction, the size of the dimple is larger, and the corresponding elongation is superior to that in any other direction.
  • [1]
    Faller K, Frose F H. The use of titanium in family automobiles: Current trends. JOM, 2001, 53(4): 27 DOI: 10.1007/s11837-001-0143-3
    [2]
    Nyakana S L, Fanning J C, Boyer R R. Quick reference guide for β titanium alloys in the 00s. J Mater Eng Perform, 2005, 14(6): 799 DOI: 10.1361/105994905X75646
    [3]
    Boyer R R. Attributes, characteristics, and applications of titanium and its alloys. JOM, 2010, 62(5): 21 DOI: 10.1007/s11837-010-0071-1
    [4]
    邹武装. “海洋金属”钛的特性及应用. 世界有色金属, 2014(8): 28

    Zhou W Z. Characteristics and application of titanium as "Marine metal". World Nonferrous Met, 2014(8): 28
    [5]
    徐鲁杰, 程德彬. 船用钛合金及钛合金粉末冶金技术. 材料开发与应用, 2009, 24(2): 68 DOI: 10.3969/j.issn.1003-1545.2009.02.017

    Xu L J, Cheng D B. Ship Ti alloy and Ti alloy powder metallurgy technology. Dev Appl Mater, 2009, 24(2): 68 DOI: 10.3969/j.issn.1003-1545.2009.02.017
    [6]
    胡耀君. 发展中的船用钛合金. 钛工业进展, 1998(4): 1

    Hu Y J. Developing marine titanium alloy. Titanium Ind Prog, 1998(4): 1
    [7]
    李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景. 钛工业进展, 2004, 21(5): 19 DOI: 10.3969/j.issn.1009-9964.2004.05.005

    Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys. Titanium Ind Prog, 2004, 21(5): 19 DOI: 10.3969/j.issn.1009-9964.2004.05.005
    [8]
    杜永勤, 王建平, 王书华, 等. 新型Ti−6Al−3Nb−2Zr−1Mo(Ti80)合金焊接工艺研究. 石油化工设备, 2015, 44(2): 67 DOI: 10.3969/j.issn.1000-7466.2015.02.015

    Du Y Q, Wang J P, Wang S H, et al. Welding procedure research of new titanium alloy Ti−6Al−3Nb−2Zr−1Mo (Ti80). Petro-Chem Equip, 2015, 44(2): 67 DOI: 10.3969/j.issn.1000-7466.2015.02.015
    [9]
    黄瑜, 汤慧萍, 贾文鹏, 等. 元素添加方式对Ti−6Al−3Nb−2Zr−1Mo合金性能的影响. 稀有金属材料与工程, 2011, 40(12): 2227

    Huang Y, Tang H P, Jia W P, et al. Influence of element addition ways on the performance of Ti−6Al−3Nb−2Zr−1Mo alloy. Rare Met Mater Eng, 2011, 40(12): 2227
    [10]
    Guo K, Meng K, Miao D, et al. Effect of annealing on microstructure and tensile properties of skew hot rolled Ti–6Al–3Nb–2Zr–1Mo alloy tube. Mater Sci Eng A, 2019, 766: 138346 DOI: 10.1016/j.msea.2019.138346
    [11]
    赵瑶, 贺跃辉, 江垚, 等. 粉末冶金Ti6Al4V合金的研究. 粉末冶金技术, 2009, 27(2): 108

    Zhao Y, He Y H, Jiang Y, et al. Research on preparation of Ti6Al4V alloy using powder metallurgy. Powder Metall Technol, 2009, 27(2): 108
    [12]
    Zhou D D, Zeng W D, Xu J W, et al. Evolution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure. Mater Charact, 2019, 151: 103 DOI: 10.1016/j.matchar.2019.03.005
    [13]
    董颐, 孙晓强. 中高碳量粉末锻造钢的综合性能. 粉末冶金技术, 1994, 12(1): 8

    Dong Y, Sun X Q. Combination mechanical properties of power forged steel with median and high carbon contents. Powder Metall Technol, 1994, 12(1): 8
    [14]
    Joane L M. Phase Diagrams of Binary Titanium Alloys. Ohio: ASM International, 1987
    [15]
    张旺峰, 曹春晓, 李兴无, 等. β热处理TA15钛合金对力学性能的影响规律. 稀有金属科学与工程, 2004, 33(7): 768

    Zhang W F, Cao C X, Li X W, et al. Effect of β heat treatment on mechanical properties of TA15 titanium alloy. Rare Met Mater Eng, 2004, 33(7): 768
    [16]
    陈才敏. 耐蚀Ti−Al−Nb−Zr−Mo合金的组成优化及组织性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2018

    Chen C M. Study on Composition Optimization and Microstructures and Properties of Corrosion Resistant Ti−Al−Nb−Zr−Mo Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2018
  • Related Articles

    [1]SHU chen, XU Qiang, LIU Yi-bo, YANG Zhiwei, KOU Shengzhong, CAO Rui. Investigation on microstructure and performance of sintered matrix and diamond saw blades welded by laser under different transition layer component[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110005
    [2]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [3]XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenlu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology, 2024, 42(3): 320-330. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020003
    [4]LIU Yiran, LI Lei, LI Xiaodong. Effect of shot peening on surface mechanical properties of selective laser melting TC4 titanium alloy[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010008
    [5]LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Yu-yang, JIANG Qiu-tong, LIU Yuan. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding[J]. Powder Metallurgy Technology, 2022, 40(3): 245-250. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010001
    [6]CHEN Peng-qi, TAI Yun-xiao, CHENG Ji-gui. Study on the sintering properties of Mo–La2O3 nano-powders prepared by solution combustion method[J]. Powder Metallurgy Technology, 2021, 39(3): 203-208. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020009
    [7]LIANG Jia-miao, WANG Li-min, HE Wei, TANG Chao, WU Xi-mao, WANG Jun. Effect of milling time on microstructures and hardness of nanocrystalline Al-7Si-0.3Mg alloy powders[J]. Powder Metallurgy Technology, 2019, 37(5): 373-381,391. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.009
    [8]WANG Da-peng, MU Yun-chao, CHENG Xiao-zhe, ZHANG Wu-qi. Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
    [9]WANG Qing-xiang, WANG Jun-long. Study on the interdiffusion of W–Ti alloy and β phase stability[J]. Powder Metallurgy Technology, 2018, 36(1): 3-8. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
    [10]Guo Yang, Liu Zuming, Su Pengfei, Ma Mengmei, Duan Ranxi, Wang Shuai. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361-367. DOI: 10.3969/j.issn.1001-3784.2016.05.008

Catalog

    Article Metrics

    Article views (416) PDF downloads (52) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return