Citation: | LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015 |
[1] |
Putyrskii S V, Yakovlev A L, Nochovnaya N A. Benefits and applications of high-strength titanium alloys. Russ Eng Res, 2018, 38(12): 945 DOI: 10.3103/S1068798X18120419
|
[2] |
Dehghan-Manshadi A, Bermingham M J, Dargusch M S, et al. Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technol, 2017, 319: 289 DOI: 10.1016/j.powtec.2017.06.053
|
[3] |
吕利强, 席锦会, 王伟, 等. 我国海洋工程用钛合金发展现状及展望. 冶金工程, 2015(2): 89
Lü L Q, Xi J H, Wang W, et al. Development status and prospect on application of titanium alloy in ocean engineering. Metall Eng, 2015(2): 89
|
[4] |
张美娟, 南海, 鞠忠强, 等. 航空铸造钛合金及其成型技术发展. 航空材料学报, 2016, 36(3): 13
Zhang M J, Nan H, Jü Z Q, et al. Aeronautical cast Ti alloy and forming technology development. J Aeronaut Mater, 2016, 36(3): 13
|
[5] |
汤慧萍, 刘咏, 韦伟峰, 等. 添加稀土元素对粉末冶金Ti合金显微组织和力学性能的影响. 中国有色金属学报, 2004, 14(2): 244
Tang H P, Liu Y, Wei W F, et al. Effects of rare earth element on microstructure and mechanical properties of powder metallurgy Ti alloy. Chin J Nonferrous Met, 2004, 14(2): 244
|
[6] |
武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225
Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225
|
[7] |
刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217
Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217
|
[8] |
Hanson A D, Runkle J C, Widmer R, et al. Titanium near net shapes from elemental powder blends. Int J Powder Metall, 1990, 26(2): 157
|
[9] |
Robertson I M, Schaffer G B. Design of titanium alloy for efficient sintering to low porosity. Powder Metall, 2009, 52(4): 311 DOI: 10.1179/003258909X12502872942499
|
[10] |
兖利鹏, 原国森, 丁海. 6061Al基体粒径对SiCp/6061Al基复合材料组织和性能的影响. 粉末冶金工业, 2017, 27(2): 20
Yan L P, Yuan G S, Ding H. Effect of 6061Al matrix particle size on microstructure and properties of SiCp/6061Al composites. Powder Metall Ind, 2017, 27(2): 20
|
[11] |
周成, 李理, 张蓉, 等. 旋锻工艺在汽车传动轴轻量化上的应用. 热加工工艺, 2018, 47(5): 143
Zhou C, Li L, Zhang R, et al. Application of rotary forging technology in light weight of automobile drive shaft. Hot Working Technol, 2018, 47(5): 143
|
[12] |
Wang M S, Wang Y F, Huang A H, et al. Promising tensile and fatigue properties of commercially pure titanium processed by rotary swaging and annealing treatment. Materials, 2018, 11(11): 2261 DOI: 10.3390/ma11112261
|
[13] |
Stolyarov V V, Zeipper L, Mingler B, et al. Influence of post-deformation on CP–Ti processed by equal channel angular pressing. Mater Sci Engin A, 2008, 476(1): 98
|
[14] |
宋小杰, 杨西荣, 刘晓燕, 等. 135°ECAP+旋锻变形工业纯钛的热稳定性研究. 材料工程, 2017, 45(6): 49
Song X J, Yang X R, Liu X Y, et al. The thermal stability of commercially pure Ti processed by 135° ECAP and swaging. J Mater Eng, 2017, 45(6): 49
|
[15] |
He Y M, Wang Y H, Guo K, et al. Effect of carbide precipitation on strain-hardening behavior and deformation mechanism of metastable austenitic stainless steel after repetitive cold rolling and reversion annealing. Mater Sci Eng, 2017, 708(21): 248
|
[16] |
孙富建, 屈盛官, 邓朝晖, 等. 不同致密度 Ti–6Al–4V 粉末冶金工件的表面形貌及粗糙度. 兵器材料科学与工程, 2017, 40(5): 1
Sun F J, Qu S G, Deng Z H, et al. Surface morphology and roughness of Ti–6Al–4V powder metallurgy workpieces with different relative densities. Ordn Mater Sci Eng, 2017, 40(5): 1
|