AdvancedSearch
ZHANG Zhi-rui, QIN Ming-li, WU Hao-yang, LIU Chang, JIA Bao-rui, QU Xuan-hui. Research progress and preparation method of aluminum nitride powder[J]. Powder Metallurgy Technology, 2021, 39(4): 373-382. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070004
Citation: ZHANG Zhi-rui, QIN Ming-li, WU Hao-yang, LIU Chang, JIA Bao-rui, QU Xuan-hui. Research progress and preparation method of aluminum nitride powder[J]. Powder Metallurgy Technology, 2021, 39(4): 373-382. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070004

Research progress and preparation method of aluminum nitride powder

More Information
  • Aluminum nitride has been widely applied for the high thermal conductivity and insulating properties. Nowadays, the global aluminum nitride application market is in the high growth stage as well as the demand for aluminum nitride is growing continuously. Aluminum nitride powders are the critical raw materials for the synthesis of aluminum nitride ceramics, and the properties of the aluminum nitride powders dominate the properties of the aluminum nitride ceramics. In the paper, the preparation methods of micrometer- and nanometer-sized aluminum nitride powders have been compared. Moreover, the future research directions and development trend of preparing aluminum nitride powders have been pointed out.
  • [1]
    Baik Y, Drew R A L. Aluminum nitride: Processing and applications. Key Eng Mater, 1996, 122-124: 553 DOI: 10.4028/www.scientific.net/KEM.122-124.553
    [2]
    Loughin S, French R H, Ching W Y, et al. Electronic structure of aluminum nitride: Theory and experiment. Appl Phys Lett, 1993, 63(9): 1182 DOI: 10.1063/1.109764
    [3]
    Yao Z Q, Li Y Q, Tang J X, et al. Growth and photoluminescence studies of AlN thin films with different orientation degrees. Diamond Relat Mater, 2008, 17(7-10): 1785 DOI: 10.1016/j.diamond.2008.02.009
    [4]
    Baskut S, Cinar A, Turan S. Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets. J Eur Ceram Soc, 2017, 37(12): 3759 DOI: 10.1016/j.jeurceramsoc.2017.03.032
    [5]
    Enloe J H, Rice R W, Lau J W, et al. Microstructural effects on the thermal conductivity of polycrystalline aluminum nitride. J Am Ceram Soc, 1991, 74(9): 2214 DOI: 10.1111/j.1151-2916.1991.tb08287.x
    [6]
    He Q, Qin M L, Huang M, et al. Synthesis of highly sinterable AlN nanopowders through sol-gel route by reduction-nitridation in ammonia. Ceram Int, 2019, 45(12): 14568 DOI: 10.1016/j.ceramint.2019.04.174
    [7]
    Chu A M, Qin M L, Rafi-ud-din, et al. Effect of urea on the size and morphology of AlN nanoparticles synthesized from combustion synthesis precursors. J Alloys Compd, 2012, 530: 144 DOI: 10.1016/j.jallcom.2011.12.133
    [8]
    Chu A M, Qin M L, Jia B R, et al. Effect of carbon source content on the carbothermal synthesis of AlN powders using a combustion synthesis precursor. Adv Mater Res, 2012, 554-556: 526 DOI: 10.4028/www.scientific.net/AMR.554-556.526
    [9]
    Chu A M, Qin M L, Rafi-ud-din, et al. Effect of aluminum source on the synthesis of AlN powders from combustion synthesis precursors. Mater Res Bull, 2012, 47(9): 2475 DOI: 10.1016/j.materresbull.2012.05.014
    [10]
    Wang L Y. Polymer network gel method for surperfine AlN powder preparation. Matec Web Conf, 2017, 109(6): 03006
    [11]
    Wang H P, Yang Q H, Jia G H, et al. Influence of yttrium dopant on the synthesis of ultrafine AlN powders by CRN route from a sol–gel low temperature combustion precursor. Adv Powder Technol, 2014, 25(1): 450 DOI: 10.1016/j.apt.2013.07.008
    [12]
    Chu A M, Qin M L, Rafi-ud-din, et al. Citric acid-assisted combustion-carbothermal synthesis of well-distributed highly sinterable AlN nanopowders. J Am Ceram Soc, 2012, 95(8): 2510 DOI: 10.1111/j.1551-2916.2012.05225.x
    [13]
    Wu H Y, Qin M L, Chu A M, et al. AlN powder synthesis by sodium fluoride-assisted carbothermal combustion. Ceram Int, 2014, 40(9): 14447 DOI: 10.1016/j.ceramint.2014.07.014
    [14]
    Zhang D, Liu F M, Cai L G, et al. Formation of novel core–shell and tadpole-like structures in the direct nitridation of aluminum powder by N2 and NH3. J Alloys Compd, 2013, 547: 91 DOI: 10.1016/j.jallcom.2012.08.031
    [15]
    张耀辉, 王群, 瞿志学, 等. Zn元素对直接氮化法制备AlN粉体的影响. 稀有金属材料与工程, 2014, 43(7): 1727

    Zhang Y H, Wang Q, Qu Z X, et al. Effect of additive Zn on the synthesis of AlN powders by direct nitridation. Rare Met Mater Eng, 2014, 43(7): 1727
    [16]
    Lee K B, Kim Y H, Choi H J, et al. Effect of carbon on the nitridation behavior of aluminum powder. J Alloys Compd, 2016, 689: 218 DOI: 10.1016/j.jallcom.2016.07.109
    [17]
    Mackenzie M, Craven A J. Quantifying the oxidation of AlN using electron energy loss spectroscopy. J Phys D, 2000, 33(14): 1647 DOI: 10.1088/0022-3727/33/14/303
    [18]
    Chung S L, Lai C H. Combustion synthesis of aluminum nitride: A review. Key Eng Mater, 2012, 521(11): 101
    [19]
    鲁慧峰. 氮化铝粉末制备及注射成形研究[学位论文]. 北京: 北京科技大学, 2020

    Lu H F. Study on Preparation and Injection Molding of Aluminum Nitride Powder [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
    [20]
    Pee J H, Park J C, Hwang K T, et al. Properties of AlN powder synthesized by self-propagating high temperature synthesis process. Key Eng Mater, 2010, 434-435: 834 DOI: 10.4028/www.scientific.net/KEM.434-435.834
    [21]
    Lin C N, Chung S L. Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers. J Mater Res, 2001, 16(12): 3518 DOI: 10.1557/JMR.2001.0483
    [22]
    Liu Z J, Wang W C, Yang D Z, et al. Synthesis of nano-size AlN powders by carbothermal reduction from plasma-assisted ball milling precursor. Plasma Sci Technol, 2016, 18(7): 759 DOI: 10.1088/1009-0630/18/7/10
    [23]
    He Q, Qin M L, Huang M, et al. Mechanism and kinetics of combustion-carbothermal synthesis of AlN nanopowders. Ceram Int, 2017, 43(12): 8755 DOI: 10.1016/j.ceramint.2017.04.006
    [24]
    Hideaki C, Jun F, Yamato H, et al. Kinetics of microwave synthesis of AlN by carbothermal-reduction-nitridation at low temperature. J Am Ceram Soc, 2018, 101(11): 4905 DOI: 10.1111/jace.15903
    [25]
    Kim J K, Jung W S. Nitridation of δ-alumina to aluminum nitride under a flow of ammonia and its mechanism. J Ceram Soc Jpn, 2011, 119(1389): 351 DOI: 10.2109/jcersj2.119.351
    [26]
    Ognjanović S M, Winterer M. Optimizing particle characteristics of nanocrystalline aluminum nitride. Powder Technol, 2017, 326: 488
    [27]
    Pee J H, Park J C, Hwang K T, et al. Synthesis of an aluminum nitride–yttria (AlN–Y2O3) composite from nano-sized porous AlN and YCl3. Res Chem Intermed, 2010, 36(6-7): 801 DOI: 10.1007/s11164-010-0184-8
    [28]
    Lee S H, Yi J H, Kim J H, et al. Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation. Ceram Int, 2011, 37(6): 1967 DOI: 10.1016/j.ceramint.2011.03.052
    [29]
    Li L, Ni G H, Zhao Y J, et al. Synthesis of nano-AlN powders from Al wire by arc plasma at atmospheric pressure. Ceram Int, 2018, 44(17): 21810 DOI: 10.1016/j.ceramint.2018.08.284
    [30]
    Gao X, Chen P W, Wang X G, et al. Production of AlN nanopowders by electrical wire explosion in liquid nitrogen. Mater Sci Forum, 2018, 910: 46 DOI: 10.4028/www.scientific.net/MSF.910.46
    [31]
    Wang S, Wang W C, Yang D Z, et al. Direct synthesis of AlN nano powder by dielectric barrier discharge plasma assisted high-energy ball milling. J Mater Sci Mater Electron, 2016, 27(8): 8518 DOI: 10.1007/s10854-016-4868-8
    [32]
    Caballero E S, Cintas J, Cuevas F G, et al. A new method for synthetizing nanocrystalline aluminium nitride via a solid-gas direct reaction. Powder Technol, 2016, 287: 341 DOI: 10.1016/j.powtec.2015.10.023
    [33]
    Rounaghi S A, Kiani Rashid A R, Eshghi H, et al. Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum. J Solid State Chem, 2012, 190: 8 DOI: 10.1016/j.jssc.2012.01.005
    [34]
    Rounaghi S A, Eshghi H, Kiani Rashid A R, et al. Synthesis of nanostructured AlN by solid state reaction of Al and diaminomaleonitrile. J Solid State Chem, 2013, 198: 542 DOI: 10.1016/j.jssc.2012.11.018
    [35]
    Borovinskaya I P, Merzhanov A G, Novikov N P, et al. Gasless combustion of mixtures of powder transition metals with boron. Combust Explos Shock Waves, 1974, 10(1): 2 DOI: 10.1007/BF01463777
    [36]
    Merzhanov A G, Karyuk G G, Borovinskaya I P, et al. Titanium carbide produced by self-propagating high-temperature synthesis-Valuable abrasive material. Sov Powder Metall Met Ceram, 1981, 20(10): 709 DOI: 10.1007/BF00791050
    [37]
    Shim G, Park J S, Cho S W. Combustion synthesis of AlN with melamine as an additive. J Mater Res, 2006, 21(3): 747 DOI: 10.1557/jmr.2006.0093
    [38]
    Qiao L, Chen S W, Zheng J W, et al. Preparation and formation mechanism of aluminum nitride ceramic particles from large aluminum powder by self-propagating high temperature synthesis. Adv Powder Technol, 2015, 26(3): 830 DOI: 10.1016/j.apt.2015.02.007
    [39]
    Sun S Y, Ge Y Y, Wang Q, et al. Combustion synthesis of fine aluminum nitride powders under micropositive N2 pressure with water additive. J Am Ceram Soc, 2019, 102(3): 914
    [40]
    Hiranaka A, Yi X M, Saito G, et al. Effects of Al particle size and nitrogen pressure on AlN combustion synthesis. Ceram Int, 2017, 43(13): 9872 DOI: 10.1016/j.ceramint.2017.04.170
    [41]
    刘建平, 张晖. NH4Cl对机械活化Al粉燃烧合成AlN的控制. 电子元件与材料, 2011, 30(1): 8 DOI: 10.3969/j.issn.1001-2028.2011.01.003

    Liu J P, Zhang H. Effects of NH4Cl on the synthesis of aluminum nitride by the spontaneous combustion of mechanically activated aluminium powder. Electron Compon Mater, 2011, 30(1): 8 DOI: 10.3969/j.issn.1001-2028.2011.01.003
    [42]
    谢晓, 隋颖, 黄晓昱, 等. 镁铝合金直接燃烧法合成AlN晶体. 无机材料学报, 2019, 34(4): 439 DOI: 10.15541/jim20180244

    Xie X, Sui Y, Huang X Y, et al. Synthesis of AlN by direct combustion of Mg‒Al alloy powder. J Inorg Mater, 2019, 34(4): 439 DOI: 10.15541/jim20180244
    [43]
    Hirai S, Miwa T, Iwata T, et al. Formation of AlN by carbothermic reduction of Al2O3 in a flowing N2 atmosphere. J Jpn Inst Met, 1989, 53: 1035 DOI: 10.2320/jinstmet1952.53.10_1035
    [44]
    Jung W S. Conversion of alumina to aluminum nitride using polymeric carbon nitride as a nitridation reagent. J Am Ceram Soc, 2016, 99(5): 1520 DOI: 10.1111/jace.14152
    [45]
    Jung W S. Effect of NiS addition on nitridation of alumina to aluminum nitride using polymeric carbon nitride as a nitridation reagent. Ceram Int, 2016, 42(13): 14716 DOI: 10.1016/j.ceramint.2016.06.097
    [46]
    André L M, Yoshimura H N. Low-temperature synthesis of AlN powder with multicomponent additive systems by carbothermal reduction–nitridation method. Mater Res Bull, 2010, 45(6): 733 DOI: 10.1016/j.materresbull.2010.02.012
    [47]
    严光能, 邓先友, 林金堵. 高导热氮化铝基板在航空工业的应用研究. 印制电路信息, 2017, 25(10): 32 DOI: 10.3969/j.issn.1009-0096.2017.10.006

    Yan G N, Deng X Y, Lin J Z. The research of high-thermal-conductive aluminum nitride substrate in airport power electronics. Printed Circuit Inf, 2017, 25(10): 32 DOI: 10.3969/j.issn.1009-0096.2017.10.006
    [48]
    Dehkordi E N, Samim Banihashemi H R, Naghizadeh R, et al. Synthesis of aluminum nitride in a coke-calcium reduction bed using nitrogen in air. Int J Miner Metall Mater, 2015, 22(9): 972 DOI: 10.1007/s12613-015-1157-0
    [49]
    郑仕远, 陈健, 潘伟. 湿化学方法合成及应用. 材料导报, 2000, 14(9): 25 DOI: 10.3321/j.issn:1005-023X.2000.09.009

    Zheng S Y, Chen J, Pan W. Compositing by wet-chemical method and its application. Mater Rev, 2000, 14(9): 25 DOI: 10.3321/j.issn:1005-023X.2000.09.009
    [50]
    魏颖娜, 魏恒勇, 赵冬梅, 等. 基于非水解sol‒gel法的碳热还原氮化合成氮化铝超细粉体. 功能材料, 2013, 44(17): 2546 DOI: 10.3969/j.issn.1001-9731.2013.17.025

    Wei Y N, Wei H Y, Zhao D M, et al. Synthesis of aluminum nitride ultrafine powder via carbon thermal reduction nitridation process based on non-hydrolytic sol‒gel method. J Funct Mater, 2013, 44(17): 2546 DOI: 10.3969/j.issn.1001-9731.2013.17.025
    [51]
    Cheng Y L, Huang X, Xi X, et al. The effect of the urea content on the properties of nano-size AlN powders synthesized by a wet chemical method. Ceram Int, 2018, 44(5): 5774 DOI: 10.1016/j.ceramint.2017.11.146
    [52]
    李紫璇, 郝留成, 张建飞, 等. 前驱体法合成氮化铝纳米材料及其生长机制. 硅酸盐学报, 2020, 48(6): 787

    Li Z X, Hao L C, Zhang J F, et al. Preparation of aluminum nitride nanomaterials by precursor method. J Chin Ceram Soc, 2020, 48(6): 787
    [53]
    Rounaghi S A, Vanpoucke D E P, Eshghi H, et al. A combined experimental and theoretical investigation of the Al-Melamine reactive milling system: A mechanistic study towards AlN-based ceramics. J Alloys Compd, 2017, 729: 240 DOI: 10.1016/j.jallcom.2017.09.168
    [54]
    Zhang W, Li Z, Zhang D. Synthesizing AlN powder by mechanochemical reaction between aluminum and melamine. J Mater Res, 2010, 25(3): 464 DOI: 10.1557/JMR.2010.0076
    [55]
    Liu Z J, Wang W C, Yang D Z, et al. In situ synthesis of AlN nanoparticles by solid state reaction from plasma assisted ball milling Al and diaminomaleonitrile mixture. Ceram Int, 2015, 42(2): 3411

Catalog

    Article Metrics

    Article views (848) PDF downloads (269) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return