AdvancedSearch
LÜ Xing, LUO Cheng. Effect of acidity coefficient on the phase composition and morphology of MoO3 synthesized by hydrothermal method[J]. Powder Metallurgy Technology, 2023, 41(3): 255-262. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080016
Citation: LÜ Xing, LUO Cheng. Effect of acidity coefficient on the phase composition and morphology of MoO3 synthesized by hydrothermal method[J]. Powder Metallurgy Technology, 2023, 41(3): 255-262. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080016

Effect of acidity coefficient on the phase composition and morphology of MoO3 synthesized by hydrothermal method

More Information
  • Corresponding author:

    LÜ Xing, E-mail: lv-xng@foxmail.com

  • Received Date: October 18, 2020
  • Accepted Date: October 18, 2020
  • Available Online: July 10, 2023
  • To study the relationship between the structure and the control conditions of molybdenum oxide synthesis, the hexagonal molybdenum trioxide (h-MoO3) microbars and the orthogonal molybdenum trioxide (α-MoO3) nanobelts were prepared by simple hydrothermal method using ammonium paramolybdate as the molybdenum source without any structure guide agent. The phase composition and morphology of the synthesized MoO3 were characterized by X-ray diffraction, scanning electron microscope, and the comprehensive thermal analysis. The relationship between the acidity coefficient and the MoO3 phase transformation and morphology change was studied, and the phase transformation mechanism was discussed. The results show that MoO3 with the different phase structures and morphologies can be obtained by controlling the acidity coefficient during the hydrothermal synthesis. h-MoO3 is obtained when the acidity coefficient is less than 12.0, and gradually converts to α-MoO3 in case that the acidity coefficient is more than 12.0; h-MoO3 gradually decreases, and when the acidity coefficient is 48.0, h-MoO3 completely disappears and α-MoO3 is obtained. After the acidity coefficient is more than 48.0, the morphology of α-MoO3 changes from microbar to nanobelt, which grows along the c axis with the increasing aspect ratio, thus obtaining the one-dimensional nanomaterials.

  • [1]
    董桂霞, 吕易楠, 韩伟丹, 等超级电容器电极材料的研究进展粉末冶金技术2016345384

    Dong G X, Lü Y N, Han W D, et alThe progress of research on electrode materials of super-capacitorsPowder Metall Technol2016345384
    [2]
    林珑, 吕程, 李海. α-MoO3纳米棒的制备及其NOx气敏研究. 化工新型材料2019476117

    Lin L, Lü C, Li HPreparation of α-MoO3 nanorods and their NOx gas sensing performanceNew Chem Mater2019476117
    [3]
    杨树林, 李珊, 徐火希, 等正交相三氧化钼湿度敏感性能的第一性原理研究武汉大学学报(理学版)201965137

    Yang S L, Li S, Xu H X, et alFirst-principles study of the humidity sensing property for orthorhombic MoO3J Wuhan Univ Nat Sci201965137
    [4]
    徐志胜, 贾宏煜, 颜龙, 等三氧化钼与有机蒙脱土复配体系在膨胀阻燃环氧树脂中的应用安全与环境学报2019193847

    Xu Z S, Jia H Y, Yan L, et alCombined application effects of MoO3 and OMMT on the flammability of the intumescent flame-retarded epoxy resinsJ Saf Environ2019193847
    [5]
    Wang L C, Gao L, Wang J, et alMoO3 nanobelts for high-performance asymmetric supercapacitorJ Mater Sci2019542113685
    [6]
    Wu H R, Lian KThe development of pseudocapacitive molybdenum oxynitride electrodes for supercapacitorsECS Trans20135825118
    [7]
    李春晓, 丘德立, 陈东, 等. 高性能锂离子电池负极材料MoO3−x的制备与性能研究. 现代化工2019391276

    Li C X, Qiu D L, Chen D, et al. Preparation of MoO3−x as high-performance anode material for lithium-ion battery and study on its property. Mod Chem Ind2019391276
    [8]
    Brezesinski T, Wang J, Tolbert S H, et alOrdered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitorsNat Mater201092146
    [9]
    李晓艳. PEG诱导下钼氧化物基复合材料的制备及其电化学性能研究[学位论文]. 北京: 中国科学院大学, 2018

    Li X Y. Molybdenum Oxide-Based Composites Prepared through PEG Induction and Their Electrochemical Properties for Lithium-ion Batteries [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2018
    [10]
    宫方方, 李继文, 魏世忠, 等三氧化钼相变及其电化学性能研究稀有金属与硬质合金201341324

    Gong F F, Li J W, Wei S Z, et alStudy on phase transition of molybdenum trioxide and its electrochemical performanceRare Met Cement Carb201341324
    [11]
    宫方方, 李继文, 魏世忠, 等水热合成法制备六方相三氧化钼(h-MoO3)及其电化学性能粉末冶金工业201323118

    Gong F F, Li J W, Wei S Z, et alHydrothermal synthesis and electrochemical performance of h-MoO3Powder Metall Ind201323118
    [12]
    张万松, 张文欣, 钟寿仙, 等化学沉淀法制备六方相、正交相三氧化钼及其电化学性能内蒙古师范大学学报(自然科学汉文版)2013424413

    Zhang W S, Zhang W X, Zhong S X, et alChemical precipitation preparation and electrochemical properties of h-MoO3 and α-MoO3J Inner Mongolia Normal Univ Nat Sci2013424413
    [13]
    宋继梅, 梅雪峰, 王红, 等硝酸辅助的六方相MoO3的制备及其光催化性质中国钼业201135523

    Song J M, Mei X F, Wang H, et alSynthesis via a HNO3 assisted and photocatalytic property of hexagonal molybdenum trioxideChina Molybd Ind201135523
    [14]
    Chithambararaj A, Yogamalar N R, Bose A CHydrothermally synthesized h-MoO3 and α-MoO3 nanocrystals: new findings on crystal-structure-dependent charge transportCryst Growth Des20161641984
    [15]
    宋英方, 兰新哲, 周军, 等表面活性剂对纳米三氧化钼形貌的影响稀有金属2010345781

    Song Y F, Lan X Z, Zhou J, et alInfluence of surfactants on morphology of nanoparticles molybdenum trioxideChin J Rare Met2010345781
    [16]
    Maheswari N, Muralidharan GControlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devicesAppl Surf Sci2017416461
    [17]
    Li J W, Wei S Z, Zhang G S, et alNano MoO3 phase structural evolution during hydrothermal synthesis and its electrochemical propertiesInt J Electrochem Sci2017122429
    [18]
    Bai S L, Chen S, Chen L Y, et alUltrasonic synthesis of MoO3 nanorods and their gas sensing propertiesSens. Actuators B201217451
    [19]
    Dhage S R, Hassa M S, Yang O B. et alLow temperature fabrication of hexagon shaped h-MoO3 nanorods and its phase transformationMater Chem Phys2009114511
    [20]
    Liu Y L, Yang S, Lu Y, et alHydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanolAppl Surf Sci2015359114
    [21]
    Kumar V, Wang X, Lee P SFormation of hexagonal-molybdenum trioxide (h-MoO3) nanostructures and their pseudocapacitive behaviorNanoscale201572711777
    [22]
    Chithambarataj A, Sanjini N S, Bose A C, et alFlower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradationCatal Sci Technol2013351405
    [23]
    高宾, 张晓军水热法合成MoO3单晶纳米带及其形成机理材料导报2017311112

    Gao B, Zhang X JHydrothermal synthesis of single crystal α-MoO3 nanobelts and their formation mechanismMater Rev2017311112
    [24]
    Hu X L, Zhang W, Liu X X, et alNanostructured Mo-based electrode materials for electrochemical energy storageChem Soc Rev2015442376
    [25]
    Kiran Kumar Reddy R, Kailasa S, Geetha Rani B, et alHydrothermal approached 1-D molybdenum oxide nanostructures for high-performance supercapacitor applicationSN Appl Sci2019111365
  • Cited by

    Periodical cited type(3)

    1. 疏敏,刘鹏,黄秋良,霍冬亮. 球磨法制备高流动性铝合金粉末技术研究. 化学工程与装备. 2024(01): 38-40 .
    2. 陈丽芳,陈刚. 电瓷废料的加工及资源化利用现状. 佛山陶瓷. 2024(04): 1-4+14 .
    3. 张进,易世彬,杨建辉,顾磊. 复合生态型透水砖的制备与性能研究. 绿色建筑. 2024(06): 167-174 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (493) PDF downloads (65) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return