Citation: | WAN Lin, ZHANG Jifeng, SUN Lu, QIU Tianxu, SHEN Xiaoping. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 508-515. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090001 |
The effects of C and Cr contents on the microstructure and physical properties of the powder forged Fe–Cu–C–Cr alloys were studied by changing the mass fraction of C and Cr elements. The results show that, the microstructures of the alloys are mainly composed of ferrite and cementite without Cr element, and the hardness and tensile strength of the alloys increase slightly with the increase of C content, showing little effect on the final friction coefficient of the alloys. After adding the Cr element, the alloy density decreases and the microstructure is more complex. The alloy hardness increases with the increase of Cr content, up to HRA 68.6. The high temperature tensile strength of the alloys is influenced by C and Cr, the tensile strength of Fe–2Cu–0.5C–5Cr is the highest (378 MPa). The friction coefficient of the alloys decreases with the increase of Cr content. When the mass fraction of Cr is 10%, the final friction coefficient is 0.195, the wear mode is mainly oxidation wear with a small amount of abrasive wear.
[1] |
陈露, 肖志瑜, 何杰, 等. Cr的添加方式与含量对粉末冶金烧结钢组织及力学性能的影响. 粉末冶金材料科学与工程, 2015, 20(3): 406
Cheng L, Xiao Z Y, He J, et al. Effect of the method of chromium addition and its content on microstructure and mechanical properties of powder metallurgy sintering steel. Mater Sci Eng Powder Metall, 2015, 20(3): 406
|
[2] |
文鑫荣, 覃俊华, 韦长兴, 等. Fe–Cu–C含油轴承的摩擦性能研究. 粉末冶金工业, 2019, 29(4): 63
Wen X R, Qin J H, Wei C X, et al. Friction properties of Fe–Cu–C oil-bearing. Powder Metall Ind, 2019, 29(4): 63
|
[3] |
彭元东, 吴海明, 易健宏, 等. C含量对Fe–Cu–C合金性能的影响. 金属材料与冶金工程, 2007, 35(6): 15
Peng Y D, Wu H M, Yi J H, et al. Influence of carbon content on the properties of Fe–Cu–C alloy. Met Mater Metall Eng, 2007, 35(6): 15
|
[4] |
Wang S, Wang Q, Wang H L, et al. Effects of copper content on microstructure and mechanical properties of powder-forged rod Fe–C–Cu alloys manufactured at elevated temperature. Mater Sci Eng A, 2019, 743: 197 DOI: 10.1016/j.msea.2018.11.082
|
[5] |
李爱, 丁宗凯, 胡洋, 等. 微细Fe–N粉的添加对Fe–C–Cu合金结构和力学性能的影响. 金属热处理, 2016, 41(11): 193
Li A, Ding Z K, Hu Y, et al. Effect of ultra-fine Fe–N powder addition on microstructure and mechanical properties of Fe–C–Cu alloy. Heat Treat Met, 2016, 41(11): 193
|
[6] |
黄永强, 申小平, 潘诗琰, 等. 粉末热锻凸轮的数值模拟. 粉末冶金工业, 2016, 26(2): 50 DOI: 10.13228/j.boyuan.issn1006-6543.20150110
Huang Y Q, Shen X P, Pan S Y, et al. Numerical simulation of powder hot forging cam. Powder Metall Ind, 2016, 26(2): 50 DOI: 10.13228/j.boyuan.issn1006-6543.20150110
|
[7] |
杨硕, 肖志瑜, 关航健, 等. 烧结和锻造态Fe–2Cu–0.5C–0.11S材料的组织与力学性能研究. 粉末冶金技术, 2017, 35(1): 23
Yang S, Xiao Z Y, Guan H J, et al. Microstructure and mechanical properties of sintered and forged Fe–2Cu–0.5C–0.11S. Powder Metall Technol, 2017, 35(1): 23
|
[8] |
王琪, 张冰清, 王邃, 等. 粉末锻造Fe–Ni–Cu–C–Mo齿轮材料热处理及性能研究. 粉末冶金技术, 2021, 39(1): 33 DOI: 10.19591/j.cnki.cn11-1974/tf.2019110004
Wang Q, Zhang B Q, Wang S, et al. Heat treatment and properties of powder forged Fe–Ni–Cu–C–Mo gear materials. Powder Metall Technol, 2021, 39(1): 33 DOI: 10.19591/j.cnki.cn11-1974/tf.2019110004
|
[9] |
孙露, 张继峰, 邱天旭, 等. 锻造温度对含钼粉末热锻合金显微组织及力学性能的影响. 粉末冶金技术, 2020, 38(3): 174 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
Sun L, Zhang J F, Qiu T X, et al. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum. Powder Metall Technol, 2020, 38(3): 174 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
|
[10] |
张冰清, 王琪, 王邃, 等. 粉末锻造齿轮材料的组织与性能研究. 粉末冶金技术, 2020, 38(2): 113 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.005
Zhang B Q, Wang Q, Wang S, et al. Study on the microstructure and properties of powder-forged gear materials. Powder Metall Technol, 2020, 38(2): 113 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.005
|
[11] |
王奇, 姚萍屏, 周海滨, 等. 含Cr铜基粉末冶金摩擦材料的磨损图研究. 摩擦学学报, 2017, 37(3): 364 DOI: 10.16078/j.tribology.2017.03.012
Wang Q, Yao P P, Zhou H B, et al. Wear map of Cu-based powder metallurgy friction materials using Cr as a friction component. Tribology, 2017, 37(3): 364 DOI: 10.16078/j.tribology.2017.03.012
|
[12] |
程璐. 含Cr铁基粉末冶金结构零件材料的制备及组织性能研究[学位论文]. 合肥: 合肥工业大学, 2018
Cheng L. Preparation, Microstructure and Property of Chromium Containing Ferrous Powder Metallurgical Structural Materials [Dissertation]. Hefei: Hefei University of Technology, 2018
|
[13] |
王崇琳. 论粉末冶金材料的密度测定. 粉末冶金工业, 2010, 20(6): 1 DOI: 10.13228/j.boyuan.issn1006-6543.2010.06.008
Wang C L. On the measurement of density for P/M Materials. Powder Metall Ind, 2010, 20(6): 1 DOI: 10.13228/j.boyuan.issn1006-6543.2010.06.008
|
[14] |
Gonzalez B M, Castro C S B, Buono V T L, et al. The influence of copper addition on the formability of AISI 304 stainless steel. Mater Sci Eng A, 2003, 343(1-2): 51 DOI: 10.1016/S0921-5093(02)00362-3
|
[15] |
王才德, 曹顺华. 高铬铁基烧结材料的研究. 粉末冶金技术, 1998, 16(2): 116 DOI: 10.19591/j.cnki.cn11-1974/tf.1998.02.008
Wang C D, Cao S H. Investigation of high-chromium iron-based sintered materials. Powder Metall Technol, 1998, 16(2): 116 DOI: 10.19591/j.cnki.cn11-1974/tf.1998.02.008
|
[16] |
史伟宁, 杨树峰, 李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展. 中国腐蚀与防护学报, 2019, 39(4): 281 DOI: 10.11902/1005.4537.2018.145
Shi W N, Yang S F, Li J S. Correlation between Cr-depleted zone and local corrosion in stainless steel: a review. J Chin Soc Corros Prot, 2019, 39(4): 281 DOI: 10.11902/1005.4537.2018.145
|
[17] |
李龙. 温度对轮轨摩擦副摩擦系数和磨损的影响研究[学位论文]. 兰州: 兰州交通大学, 2015
Li L. Effects of Temperature on Friction Coefficient and Wear of Wheel/Rail Friction [Dissertation]. Lanzhou: Lanzhou Jiaotong University, 2015
|
1. |
张旭,史思阳,张腾雨,田谨,吴亚科,王邃,赵振智,江峰. 粉末锻造Al_2O_3颗粒增强Fe–Ni–Mo–C–Cu复合材料的组织与性能. 粉末冶金技术. 2024(03): 275-282 .
![]() | |
2. |
李勇,林继兴,张俊平,王坤,王豪特,刘敬祺,缪星旭. 05Cr12NiMoCuV合金钢抽油杆热处理断裂机理分析. 浙江工贸职业技术学院学报. 2024(04): 62-67 .
![]() |