Citation: | GUAN Ruohan, DONG Guixia, YANG Shuangjuan. Application of MOFs-derived TMO/C in anode materials forlithium-ion batteries[J]. Powder Metallurgy Technology, 2023, 41(4): 363-371. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090002 |
The graphite as the commercial anode material for lithium-ion batteries shows the low specific capacity, which is difficult to meet the market demand. The metal-organic framework materials (MOFs) have the tunable structure, large surface area, and adjustable pore size, which can be used as the next generation of electrochemical energy storage devices, causing the extensive research. The synthesis of the metal (Fe, Co, Zn, Mn, Cu)-based metal organic frameworks and the derivatives were introduced in this paper, the research progress on the preparation of transition metal oxide (TMO)/C as the anode materials for lithium-ion batteries was focused, using MOFs as the precursors, and the development direction was prospected.
[1] |
Xu G, Nie P, Dou H, et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater Today, 2017, 20(4): 191 DOI: 10.1016/j.mattod.2016.10.003
|
[2] |
Yu S H, Lee S H, Lee D J, et al. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small, 2016, 12(16): 2146 DOI: 10.1002/smll.201502299
|
[3] |
Kim T, Song W T, Son D Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A, 2019, 7(7): 2942 DOI: 10.1039/C8TA10513H
|
[4] |
Zhao R, Liang Z B, Zou R Q, et al. Metal-organic frameworks for batteries. Joule, 2018, 2(11): 2235 DOI: 10.1016/j.joule.2018.09.019
|
[5] |
Xie X C, Huang K J, Wu X. Metal-organic framework derived hollow materials for electrochemical energy storage. J Mater Chem A, 2018, 6(16): 6754 DOI: 10.1039/C8TA00612A
|
[6] |
Cook T R, Zheng Y R, Stang P J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem Rev, 2013, 113(1): 734 DOI: 10.1021/cr3002824
|
[7] |
Mehta J, Bhardwaj N, Bhardwaj S K, et al. Recent advances in enzyme immobilization techniques metal-organic frameworks as novel substrates. Coord Chem Rev, 2016, 322: 30 DOI: 10.1016/j.ccr.2016.05.007
|
[8] |
Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc, 1995, 117: 10401 DOI: 10.1021/ja00146a033
|
[9] |
Li B, Wen H, Cui Y, et al. Emerging multifunctional metal-organic framework materials. Adv Mater, 2016, 28(40): 8819 DOI: 10.1002/adma.201601133
|
[10] |
Li T, Bai Y L, Wang Y, et al. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord Chem Rev, 2020, 410: 213
|
[11] |
Xia W, Mahmood A, Zou R, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci, 2015, 8(7): 1837 DOI: 10.1039/C5EE00762C
|
[12] |
Zou F, Chen Y M, Liu K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano, 2016, 10(1): 377 DOI: 10.1021/acsnano.5b05041
|
[13] |
Zheng M B, Tang H, Li L L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci, 2018, 5(3): 1700592 DOI: 10.1002/advs.201700592
|
[14] |
Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv Mater, 2019, 31(11): 1804903.1
|
[15] |
Tian D, Zhou X L, Zhang Y H, et al. MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg Chem, 2015, 54(17): 8159 DOI: 10.1021/acs.inorgchem.5b00544
|
[16] |
Ding Y C, Hu L H, He D C, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem Eng J, 2020, 380: 122489 DOI: 10.1016/j.cej.2019.122489
|
[17] |
Qu Q, Gao T, Zheng H, et al. Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon, 2015, 92: 119 DOI: 10.1016/j.carbon.2015.03.061
|
[18] |
Li M, Wang W, Yang M, et al. Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe-MOF as high-performance anode materials for lithium-ion batteries. RSC Adv, 2015, 5(10): 7356 DOI: 10.1039/C4RA11900B
|
[19] |
Chen Y, Zheng L, Fu Y, et al. MOF-derived Fe3O4/carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries. RSC Adv, 2016, 6(89): 85917 DOI: 10.1039/C6RA19041C
|
[20] |
Song Y, Chen Y, Wu J, et al. Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium-ion batteries. J Alloys Compd, 2017, 694: 1246 DOI: 10.1016/j.jallcom.2016.10.110
|
[21] |
Zhang J, Chu R, Chen Y, et al. MOF-derived transition metal oxide encapsulated in carbon layer as stable lithium ion battery anodes. J Alloys Compd, 2019, 797: 83 DOI: 10.1016/j.jallcom.2019.04.162
|
[22] |
Yang T, Liu Y, Huang Z, et al. In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries. J Alloys Compd, 2018, 735: 1079 DOI: 10.1016/j.jallcom.2017.11.125
|
[23] |
Fu Y, Zhong B, Chen Y, et al. Porous ZnO@C core–shell nanocomposites as high performance electrode materials for rechargeable lithium-ion batteries. J Porous Mater, 2016, 24(3): 613
|
[24] |
Yue H, Shi Z, Wang Q, et al. In situ preparation of cobalt doped ZnO@C/CNT composites by the pyrolysis of a cobalt doped MOF for high performance lithium ion batteries. RSC Adv, 2015, 5(92): 75653 DOI: 10.1039/C5RA14271G
|
[25] |
Hou C, Tai Z, Zhao L, et al. High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A, 2018, 6(20): 9723 DOI: 10.1039/C8TA02863J
|
[26] |
Cui Z, Liu Q, Xu C, et al. A new strategy to effectively alleviate volume expansion and enhance the conductivity of hierarchical MnO@C nanocomposites for lithium ion batteries. J Mater Chem A, 2017, 5(41): 21699 DOI: 10.1039/C7TA05986H
|
[27] |
Niu J L, Hao G X, Lin J, et al. Mesoporous MnO/C-N nanostructures derived from a metal-organic framework as high-performance anode for lithium-ion battery. Inorg Chem, 2017, 56(16): 9966 DOI: 10.1021/acs.inorgchem.7b01486
|
[28] |
Maiti S, Pramanik A, Mahanty S. Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal–organic framework. Cryst Eng Comm, 2016, 18(3): 450 DOI: 10.1039/C5CE01976A
|
[29] |
Tian X M, Zhao D L, Meng W J, et al. Highly porous MnO/C@rGO nanocomposite derived from MnBDC@rGO as high-performance anode material for lithium ion batteries. J Alloys Compd, 2019, 792: 487 DOI: 10.1016/j.jallcom.2019.04.027
|
[30] |
Xu Y H, Jian G Q, Zachariah M R, et al. Nano-structured carbon-coated CuO hollow spheres as stable and high rate anodes for lithium-ion batteries. J Mater Chem A, 2013, 1: 15486 DOI: 10.1039/c3ta13698a
|
[31] |
Ramaraju B, Li C H, Prakash S, et al. Metal–organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications. Chem Comm, 2016, 52(5): 946 DOI: 10.1039/C5CC07621H
|
[32] |
Xu Y, Chu K, Li Z, et al. Porous CuO@C composite as high-performance anode materials for lithium-ion batteries. Dalton Trans, 2020, 49(33): 11597 DOI: 10.1039/D0DT02493G
|
[33] |
Yin H, Yu X X, Li Q W, et al. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J Alloys Compd, 2017, 706: 97 DOI: 10.1016/j.jallcom.2017.02.215
|
[34] |
Peng H J, Hao G X, Chu Z H, et al. Mesoporous spindle-like hollow CuO/C fabricated from a Cu-based metal-organic framework as anodes for high-performance lithium storage. J Alloys Compd, 2017, 727: 1020 DOI: 10.1016/j.jallcom.2017.08.231
|
[35] |
Kang M S, Lee D H, Lee K J, et al. Porosity- and content-controlled metal/metal oxide/metal carbide@carbon (M/MO/MC@C) composites derived from MOFs: mechanism study and application for lithium-ion batteries. New J Chen, 2018, 42(23): 18678 DOI: 10.1039/C8NJ04919J
|
[36] |
Yang X, Wang Y, Hu Y Y, et al. Interior supported hierarchical TiO2@Co3O4 derived from MOF-on-MOF architecture with enhanced electrochemical properties for lithium storage. Chem Electro Chem, 2019, 6(14): 3657
|
[37] |
Lu Y, Yu L, Wu M H, et al. Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties. Adv Mater, 2018, 30(1): 1702875 DOI: 10.1002/adma.201702875
|
[38] |
Ding H, Zhang X K, Fan J Q, et al. MOF-templated synthesis of Co3O4@TiO2 hollow dodecahedrons for high-storage-density lithium-ion batteries. ACS Omega, 2019, 4(8): 13241 DOI: 10.1021/acsomega.9b01405
|
[39] |
Zhong M, Yang D H, Kong L J, et al. Bimetallic metal-organic framework derived Co3O4-CoFe2O4 composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalton Trans, 2017, 46(45): 15947 DOI: 10.1039/C7DT03047A
|
[40] |
Ge X, Li Z, Wang C, et al. Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl Mater Interfaces, 2015, 7(48): 26633 DOI: 10.1021/acsami.5b08195
|
[41] |
Huang G, Yin D, Zhang F, et al. Yolk@shell or concave cubic NiO-Co3O4@C nanocomposites derived from metal-organic frameworks for advanced lithium-ion battery anodes. Inorg Chem, 2017, 56(16): 9794 DOI: 10.1021/acs.inorgchem.7b01296
|
[42] |
Li Z, Yin L. Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A, 2015, 3(43): 21569 DOI: 10.1039/C5TA05733G
|