Citation: | ZHAO Gang, ZHOU Xiao-jun, LIANG Bin, BAI Xiao-dong, CAI Zhen-yang, YANG Sheng-chun. Effect of silicide coating on mechanical properties of Nb‒Ti‒Al alloys[J]. Powder Metallurgy Technology, 2022, 40(6): 494-498. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120004 |
he low-density Nb‒Ti‒Al alloy ingots were prepared by vacuum arc furnace smelting method in this paper, the Si‒Cr‒Ti composite silicide coatings were deposited on the surface of Nb‒Ti‒Al alloys by the slurry sintering method, and the universal electronic tensile testing machine was used to study the effect of silicide coating on the mechanical properties of the uncoated and coated alloys. The results show that, the mechanical properties (tensile strength, yield strength, and elongation) at room temperature of the coated low-density niobium alloys are significantly reduced, comparing with the uncoated alloys. To investigate the reasons for the decrease in the mechanical properties of the uncoated alloys, the scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to observe the microstructure, analyze the composition of interface between coating and substrate, and test the C content (mass fraction) of the uncoated and coated alloys. In the results, the main reasons for the decrease in the mechanical properties of the coated niobium alloys are the significant growth of the alloy grains, the outward diffusion of the strengthening element Al, the formation of the brittle phase Nb3Al, and the “seepage effect” of the alloy due to the Si‒Cr‒Ti coating.
[1] |
Sikka V K, Loria E A. Characteristics of a multicomponent Nb‒Ti‒Al alloy via industrical-scale practice. Mater Sci Eng A, 1997, 239-240: 745 DOI: 10.1016/S0921-5093(97)00662-X
|
[2] |
郭青蔚, 王肇信. 现代铌钽冶金. 北京: 冶金工业出版社, 2009
Guo Q W, Wang Z X. Modern Metallurgy of Niobium and Tantalum. Beijing: Metallurgical Industry Press, 2009
|
[3] |
郭宝会, 郭喜平. Nb‒Ti‒Cr‒Si基超高温合金的室温断裂韧性研究进展. 材料导报, 2016, 30(17): 148
Guo B H, Guo X P. Recent progress on room temperature fracture toughness of Nb‒Ti‒Cr‒Si based ultrahigh temperature alloy. Mater Rev, 2016, 30(17): 148
|
[4] |
蔡圳阳, 肖来荣, 余宸旭, 等. Nb‒Ti‒Al合金及其硅化物涂层的高温氧化行为. 粉末冶金材料科学与工程, 2013, 18(1): 94 DOI: 10.3969/j.issn.1673-0224.2013.01.018
Cai Z Y, Xiao L R, Yu C X, et al. High temperature oxidation behavior of Nb‒Ti‒Al alloy and its silicide coating. Mater Sci Eng Powder Metall, 2013, 18(1): 94 DOI: 10.3969/j.issn.1673-0224.2013.01.018
|
[5] |
王峰, 郑欣, 白润, 等. 低密度NbTiAlVZr合金的微观组织和力学性能. 稀有金属材料与工程, 2011, 40(11): 1972
Wang F, Zheng X, Bai R, et al. Microstructure and mechanical properties of low-density NbTiAlVZr alloy. Rare Met Mater Eng, 2011, 40(11): 1972
|
[6] |
汪燕青, 刘兆刚, 王东新, 等. 几种Nb‒Ti‒Cr‒Al合金的微合金强化工艺. 湖南有色金属, 2012, 28(6): 40 DOI: 10.3969/j.issn.1003-5540.2012.06.012
Wang Y Q, Liu Z G, Wang D X, et al. Several micro-alloy strengthening techniques in low-density Nb‒Ti‒Cr‒Al super alloys. Hunan Nonferrous Met, 2012, 28(6): 40 DOI: 10.3969/j.issn.1003-5540.2012.06.012
|
[7] |
刘兆刚, 汪燕青, 刘创红, 等. 铌钛铬铝合金的铸态微观组织分析研究. 湖南有色金属, 2012, 28(2): 47 DOI: 10.3969/j.issn.1003-5540.2012.02.013
Liu Z G, Wang Y Q, Liu C H, et al. Study on microstructure of as-cast Nb‒Ti‒Cr‒Al alloys. Hunan Nonferrous Met, 2012, 28(2): 47 DOI: 10.3969/j.issn.1003-5540.2012.02.013
|
[8] |
蔡圳阳, 沈鸿泰, 刘赛男, 等. 难熔金属合金及其高温抗氧化涂层研究现状与展望. 中国有色金属学报, 2020, 30(9): 1991 DOI: 10.11817/j.ysxb.1004.0609.2020-37623
Cai Z Y, Shen H T, Liu S N, et al. Review and prospect of refractory metal alloys and high temperature oxidation resistance coatings. Chin J Nonferrous Met, 2020, 30(9): 1991 DOI: 10.11817/j.ysxb.1004.0609.2020-37623
|
[9] |
贾中华. 料浆法制备铌合金和钼合金高温抗氧化涂层. 粉末冶金技术, 2001, 19(2): 74 DOI: 10.3321/j.issn:1001-3784.2001.02.003
Jia Z H. High-temperature oxidation-resistant coatings for columbium alloy and molybdenum alloy with slurry method. Powder Metall Technol, 2001, 19(2): 74 DOI: 10.3321/j.issn:1001-3784.2001.02.003
|
[10] |
赵刚, 周小军, 张静, 等. Nb‒Ti‒Al基合金防护涂层制备及其抗氧化机理研究. 粉末冶金技术, 2017, 35(5): 347
Zhao G, Zhou X J, Zhang J, et al. Preparation and antioxidation mechanism of Nb–Ti–Al based alloy protective coatings. Powder Metall Technol, 2017, 35(5): 347
|
[11] |
余宸旭, 肖来荣, 赵雷, 等. Nb‒Ti‒Al高温合金的再结晶动力学和晶粒长大行为. 材料热处理学报, 2012, 33(增刊II): 40
Yu C X, Xiao L R, Zhao L, et al. Dynamics of recrystallization and grain growth behavior of Nb‒Ti‒Al superalloy. Trans Mater Heat Treat, 2012, 33(Supple II): 40
|
[12] |
Leonard K J, Mishurda J C, Vasudevan V K. Phase equilibria at 1100 ℃ in the Nb‒Ti‒A1 system. Mater Sci Eng A, 2002, 329-331: 282 DOI: 10.1016/S0921-5093(01)01567-2
|
[13] |
魏文庆, 王宏伟, 邹鹑鸣, 等. Al含量对Nb‒Ti‒C合金组织的影响. 稀有金属材料与工程, 2011, 40(8): 1458
Wei W Q, Wang H W, Zou C M, et al. Effects of Al contents on the microstructure of Nb‒Ti‒C alloys. Rare Met Mater Eng, 2011, 40(8): 1458
|
[14] |
殷为宏, 汤慧萍. 难熔金属材料与工程应用. 北京: 冶金工业出版社, 2012
Yin W H, Tang H P. Refractory Metal Materials and Engineering Applications. Beijing: Metallurgical Industry Press, 2012
|
[15] |
余宸旭, 肖来荣, 赵小军, 等. C元素的添加对Nb‒20Ti‒16Al合金组织和性能的影响. 稀有金属, 2017, 41(9): 980
Yu C X, Xiao L R, Zhao X J, et al. Microstructure and mechanical properties of Nb‒20Ti‒16Al alloy with carbon addition. Chin J Rare Met, 2017, 41(9): 980
|
[16] |
Xiao L R, Zhou X J, Wang Y F, et al. Formation and oxidation behavior of Ce-modified MoSi2‒NbSi2 coating on niobium alloy. Corros Sci, 2020, 173: 108751 DOI: 10.1016/j.corsci.2020.108751
|
[17] |
Cai Z Y, Zhao X J, Zhang D X, et al. Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta‒W alloy at 1800 ℃. Corros Sci, 2018, 143: 116 DOI: 10.1016/j.corsci.2018.08.007
|
1. |
刘尖,崔健,赵刚,白晓东. 新型Nb-W-Ta合金用高温抗氧化涂层的制备. 化学与粘合. 2024(05): 439-442 .
![]() |