AdvancedSearch
WANG Piao-piao, CHEN Peng-qi, FANG Qing-qing, ZHANG Mei, HONG Tao, CHENG Ji-gui. Preparation and performance of SUS430-Sr2Fe1.5Mo0.5O6‒δ stainless steel-ceramic composite interconnect materials for solid oxide fuel cell[J]. Powder Metallurgy Technology, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011
Citation: WANG Piao-piao, CHEN Peng-qi, FANG Qing-qing, ZHANG Mei, HONG Tao, CHENG Ji-gui. Preparation and performance of SUS430-Sr2Fe1.5Mo0.5O6‒δ stainless steel-ceramic composite interconnect materials for solid oxide fuel cell[J]. Powder Metallurgy Technology, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011

Preparation and performance of SUS430-Sr2Fe1.5Mo0.5O6‒δ stainless steel-ceramic composite interconnect materials for solid oxide fuel cell

More Information
  • Corresponding author:

    CHENG Ji-gui, E-mail: jgcheng@hfut.edu.cn

  • Received Date: December 21, 2020
  • Available Online: March 26, 2021
  • The SUS430-Sr2Fe1.5Mo0.5O6−δ (SUS430-SFM) stainless steel-ceramic composite connector materials for solid oxide fuel cell (SOFC) were prepared by a compaction-sintering-coating method, using SUS430 stainless powders and Sr2Fe1.5Mo0.5O6−δ (SFM) ceramic powders as the raw materials. Microstructure, oxidation resistance, and electrical conductivity of the sintered SUS430 and SUS430-SFM samples were characterized. The results show that the SFM coating and the SUS430 substrate show a matching thermal expansion coefficient (TEC), and there is a good combination between the coating and the substrate. The oxidation rate constant of the SUS430-SFM sample is about 3.66×10−14 g2∙cm−4∙s−1 after oxidation at 800 ℃ for 140 h in air, which is about 50% lower than that of the SUS430 sample (2.42×10−14 g2∙cm−4∙s−1). The area specific resistance (ASR) of the SUS430-SFM sample also reduces from 81 mΩ∙cm2 (SUS430 sample) to 2.6 mΩ∙cm2. The present work indicates that the SFM coating can effectively improve the oxidation resistance and the electrical conductivity of the SUS430 stainless substrate.
  • [1]
    Yang Z G, Xia G G, Li X H, et al. (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int J Hydrogen Energy, 2007, 32(16): 3648 DOI: 10.1016/j.ijhydene.2006.08.048
    [2]
    高彬, 张勇, 李振奎, 等. 金属连接体表面Y改性NiFe2O4尖晶石涂层的制备与性能. 热加工工艺, 2019, 48(2): 143

    Gao B, Zhang Y, Li Z K, et al. Preparation and properties of Y modified NiFe2O4 spinel coating on surface of metal interconnects. Hot Working Technol, 2019, 48(2): 143
    [3]
    Wu J W, Liu X B. Recent development of SOFC metallic interconnect. J Mater Sci Technol, 2010, 26(4): 293 DOI: 10.1016/S1005-0302(10)60049-7
    [4]
    Shaigan N, Qu W, Ivey D G, et al. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J Power Sources, 2010, 195(6): 1529 DOI: 10.1016/j.jpowsour.2009.09.069
    [5]
    Mah J C W, Muchtar A, Somalu M R, et al. Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques. Int J Hydrogen Energy, 2017, 42(14): 9219 DOI: 10.1016/j.ijhydene.2016.03.195
    [6]
    Yang X L, Tu H Y, Yu Q C. Fabrication of Co3O4 and La0.6Sr0.4CoO3‒δCe0.8Gd0.2O2‒δ dual layer coatings on SUS430 steel by in-situ phase formation for solid oxide fuel cell interconnects. Int J Hydrogen Energy, 2015, 40(1): 607 DOI: 10.1016/j.ijhydene.2014.11.021
    [7]
    Fergus J W. Metallic interconnects for solid oxide fuel cells. Mater Sci Eng A, 2005, 397(1-2): 271 DOI: 10.1016/j.msea.2005.02.047
    [8]
    张鹏, 王智勇, 尚峰, 等. 两相质量比对粉末冶金双相不锈钢显微组织与力学性能的影响. 粉末冶金技术, 2020, 38(4): 269

    Zhang P, Wang Z Y, Shang F, et al. Effect of two phase mass ratio on the microstructure and mechanical properties of duplex stainless steel fabricated by powder metallurgy. Powder Metall Technol, 2020, 38(4): 269
    [9]
    Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A, 2003, 348(1-2): 227 DOI: 10.1016/S0921-5093(02)00736-0
    [10]
    Evans A, Bieberle-Hütter A, Galinski H, et al. Micro-solid oxide fuel cells: status, challenges, and chances. Monatsh Chem, 2009, 140(9): 975 DOI: 10.1007/s00706-009-0107-9
    [11]
    赵刚, 周小军, 张静, 等. Nb‒Ti‒Al基合金防护涂层制备及其抗氧化机理研究. 粉末冶金技术, 2017, 35(5): 347

    Zhao G, Zhou X J, Zhang J, et al. Preparation and antioxidationm echanism of Nb‒Ti‒Al based alloy protective coatings. Powder Metall Technol, 2017, 35(5): 347
    [12]
    周天池, 丁江涛, 赖永彪, 等. 金属连接体用Mn‒Cu尖晶石涂层的制备及其高温氧化导电性能. 腐蚀与防护, 2020, 41(1): 9 DOI: 10.11973/fsyfh-202001002

    Zhou T C, Ding J T, Lai Y B, et al. High temperature oxidation behavior and conductivity of prepared Mn‒Cu spinel coating for metal interconnects. Corros Prot, 2020, 41(1): 9 DOI: 10.11973/fsyfh-202001002
    [13]
    Stevenson J W, Yang Z G, Xia G G, et al. Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. J Power Sources, 2013, 231(1-2): 256
    [14]
    付倩倩, 通雁鹏. 基于曲面响应法的大气等离子喷涂La2Ce2O7涂层粒子特性与微观结构研究. 粉末冶金技术, 2020, 38(5): 13

    Fu Q Q, Tong Y P. Study on particle characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method. Powder Metall Technol, 2020, 38(5): 13
    [15]
    Liu Q, Dong X H, Xiao G L, et al. A novel electrode material for symmetrical SOFCs. Adv Mater, 2011, 22(48): 5478
    [16]
    Muñoz-García A B, Bugaris D E, Pavone M, et al. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6 ‒ δ, an electrode material for symmetric solid oxide guel cells. J Am Chem Soc, 2012, 43(33): 6826
    [17]
    付长璟. 中温平板式 SOFC 合金连接体的制备及其性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2007

    Fu C J. Study on Preparation and Properties of Alloy Interconnects for Intermediate Temperature SOFC [Dissertation]. Harbin: Harbin Institute of Technology, 2007
    [18]
    代宁宁. 新型Sr2Fe1.5Mo0.5O6‒δ基固体氧化物燃料电池阴极材料的研究[学位论文]. 北京: 北京理工大学, 2014

    Dai N N. Studies on Novel Solid Oxide Fuel Cell Cathode Materials Based on Sr2Fe1.5Mo0.5O6 ‒δ [Dissertation]. Beijing: Beijing Institute of Technology, 2014
    [19]
    Ebrahimifar H, Zandrahimi M. Oxidation and electrical behavior of AISI 430 coated with cobalt spinels for SOFC interconnect applications. Surf Coat Technol, 2011, 206(1): 75 DOI: 10.1016/j.surfcoat.2011.06.046
    [20]
    Wu J W, Johnson C D, Jiang Y, et al. Pulse plating of Mn‒Co alloys for SOFC interconnect applications. Electrochim Acta, 2008, 54(2): 793 DOI: 10.1016/j.electacta.2008.06.057
    [21]
    Zhang W, Yan D, Yang J, et al. A novel low Cr-containing Fe–Cr–Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells. J Power Sources, 2014, 271: 25 DOI: 10.1016/j.jpowsour.2014.07.170
    [22]
    Conceicao L D, Dessemond L, Djurado E, et al. Thin films of La0.7Sr0.3MnO3‒δ dip-coated on Fe‒Cr alloys for SOFC metallic interconnect. Int J Hydrogen Energy, 2013, 38(35): 15335 DOI: 10.1016/j.ijhydene.2013.09.048
    [23]
    Sun Z, Wang R, Nikiforov A Y, et al. CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells. J Power Sources, 2018, 378: 125 DOI: 10.1016/j.jpowsour.2017.12.031
    [24]
    Cheng F, Sun J. Fabrication of a double-layered Co‒Mn‒O spinel coating on stainless steel via the double glow plasma alloying process and preoxidation treatment as SOFC interconnect. Int J Hydrogen Energy, 2019, 44(33): 18415 DOI: 10.1016/j.ijhydene.2019.05.060
    [25]
    Saeidpour F, Zandrahimi M, Ebrahimifar H. Pulse electrodeposition of cobalt/zirconia coatings: oxidation and electrical performance of ferritic stainless steel interconnects. Oxid Met, 2020, 93(1): 83
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (523) PDF downloads (53) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return