AdvancedSearch
ZHANG Weiqiang, YUAN Gecheng, WANG Juan, LUO Tiegang. Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites[J]. Powder Metallurgy Technology, 2023, 41(3): 268-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010001
Citation: ZHANG Weiqiang, YUAN Gecheng, WANG Juan, LUO Tiegang. Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites[J]. Powder Metallurgy Technology, 2023, 41(3): 268-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010001

Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites

More Information
  • Corresponding author:

    YUAN Gecheng, E-mail: gchyuan@gdyt.edu.cn

  • Received Date: March 14, 2021
  • Accepted Date: March 14, 2021
  • Available Online: June 20, 2023
  • Alumina reinforced zirconia (ARZ) ceramic particle reinforced 316L stainless steel (316L stainless steel/ARZ) composites were prepared by powder metallurgy. The effects of ARZ ceramic particle volume fraction on the microstructure, relative density, hardness, and wear resistance of 316L stainless steel/ARZ composites were investigated. The results show that, when the ARZ volume fraction is 20%, the relative density of the composite reaches 97.53%, which is similar to that of the stainless steel matrix. The agglomeration of ceramic particles decreases the relative density of the composite when the ARZ ceramic particles are added. The hardness of 316L stainless steel/ARZ composites increases with the increase of ARZ volume fraction. When the volume fraction of ARZ ceramic particles is 60%, the hardness of composites reaches the maximum as HRB 96.8. The wear resistance of the composites is better than that of the stainless steel matrix, and the volume wear rate of the composites with the ARZ volume fraction of 60% is 4.2 times lower than that of the matrix. The wear resistance of the composites increases with the increase of ARZ ceramic particle content. The abrasion mechanism of 316L stainless steel/ARZ composites is mainly the desquamation of 316L stainless steel particles.

  • [1]
    郭英奎, 李东波, 周玉, 等. ZrO2(2Y)/316L不锈钢复合材料的微观组织. 中国有色金属学报, 2003, 13(4): 963

    Guo Y K, Li D B, Zhou Y, et al. Microstructure of ZrO2(2Y)/316L stainless steel composites. Chin J Nonferrous Met, 2003, 13(4): 963
    [2]
    郭英奎, 赵晓华, 周玉, 等. ZrO2/316L不锈钢复合材料的SEM分析. 哈尔滨理工大学学报. 2002, 7(1): 50

    Guo Y K, Zhao X H, Zhou Y, et al. The SEM analysis of ZrO2/316L stainless steel composites. J Harbin Univ Sci Technol, 2002, 7(1): 50
    [3]
    Kuruvilla A K, Prasad K S, Bhanuprasad V V, et al. Microstructure-property correlation in Al/TiB2(XD) composites. Scr Metall Mater, 1990, 24(5): 873 DOI: 10.1016/0956-716X(90)90128-4
    [4]
    邓陈虹, 葛启录, 范爱琴. 粉末冶金金属基复合材料的研究现状及发展趋势. 粉末冶金工业, 2011, 21(1): 54

    Deng C H, Ge Q L, Fan A Q. Present research status and trend of metal matrix composites by powder metallurgy. Powder Metall Ind, 2011, 21(1): 54
    [5]
    Kaczmar J W, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol, 2000, 106(1-3): 58 DOI: 10.1016/S0924-0136(00)00639-7
    [6]
    Zhang L B, Hai J T. Metal matrix composites in China. J Mater Process Technol, 1998, 75(1-3): 1 DOI: 10.1016/S0924-0136(97)00236-7
    [7]
    曹勇家. 金属注射成形不锈钢. 粉末冶金技术, 2000, 18(4): 274

    Cao Y J. Metal injection molding of stainless steels. Powder Metall Technol, 2000, 18(4): 274
    [8]
    郭振文, 张文泉, 刘雪峰, 等. 316L不锈钢/Y-PSZ复合材料摩擦磨损特性. 工程科学学报, 2008, 30(7): 740

    Guo Z W, Zhang W Q, Liu X F, et al. Friction wear behaviors of 316L stainless steel/Y-PSZ composites. Chin J Eng, 2008, 30(7): 740
    [9]
    蒲泽林, 褚景春, 毛雪平. 颗粒增强金属基复合材料的制备方法综述. 现代电力, 2002, 19(6): 31

    Pu Z L, Chu J L, Mao X P. Summarization on preparation for particle reinforced metal matrix composites. Mod Electr Power, 2002, 19(6): 31
    [10]
    Luo Z C, Ning J P, Wang J, et al. Microstructure and wear properties of TiC-strengthened high-manganese steel matrix composites fabricated by hypereutectic solidification. Wear, 2019, 432-433: 202970 DOI: 10.1016/j.wear.2019.202970
    [11]
    田常娟, 何新波, 梅敏, 等. 粉末注射成形制备Si3N4颗粒增强316L不锈钢. 工程科学学报, 2011, 33(11): 1373

    Tian C J, He X B, Mei M, et al. Si3N4 particle-reinforced 316L stainless steel prepared by powder injection molding. Chin J Eng, 2011, 33(11): 1373
    [12]
    任澍忻, 陈文革, 冯涛, 等. 粉末冶金制备碳纤维增强铁‒铜基摩擦材料的组织与性能. 粉末冶金技术, 2020, 38(2): 104

    Ren S X, Chen W G, Feng T, et al. Microstructure and properties of carbon fiber reinforced Fe‒Cu based friction materials prepared by powder metallurgy. Powder Metall Technol, 2020, 38(2): 104
    [13]
    马建朝. ZTA颗粒增强高锰钢复合材料制备及其性能研究[学位论文]. 西安: 西安理工大学, 2019

    Ma J C. Preparation and Properties of ZTA Particle Reinforced High Manganess Steel Composites [Dissertation]. Xi’ an: Xi’ an University of Technology, 2019
    [14]
    潘超梅. 316L不锈钢粉末注射成形模拟及实验研究[学位论文]. 昆明: 昆明理工大学, 2016

    Pan C M. Simulation and Experimental Study on Injection Molding of 316L Stainless Steel Powder [Dissertation]. Kunming: Kunming University of Science and Technology, 2016
    [15]
    卢博, 朱建锋, 方媛, 等. 原位合成SiC对铝基复合材料微观组织和力学性能的影响. 粉末冶金技术, 2020, 38(1): 42

    Lu B, Zhu J F, Fang Y, et al. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis. Powder Metall Technol, 2020, 38(1): 42
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views (326) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return