Citation: | ZHANG Weiqiang, YUAN Gecheng, WANG Juan, LUO Tiegang. Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites[J]. Powder Metallurgy Technology, 2023, 41(3): 268-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010001 |
Alumina reinforced zirconia (ARZ) ceramic particle reinforced 316L stainless steel (316L stainless steel/ARZ) composites were prepared by powder metallurgy. The effects of ARZ ceramic particle volume fraction on the microstructure, relative density, hardness, and wear resistance of 316L stainless steel/ARZ composites were investigated. The results show that, when the ARZ volume fraction is 20%, the relative density of the composite reaches 97.53%, which is similar to that of the stainless steel matrix. The agglomeration of ceramic particles decreases the relative density of the composite when the ARZ ceramic particles are added. The hardness of 316L stainless steel/ARZ composites increases with the increase of ARZ volume fraction. When the volume fraction of ARZ ceramic particles is 60%, the hardness of composites reaches the maximum as HRB 96.8. The wear resistance of the composites is better than that of the stainless steel matrix, and the volume wear rate of the composites with the ARZ volume fraction of 60% is 4.2 times lower than that of the matrix. The wear resistance of the composites increases with the increase of ARZ ceramic particle content. The abrasion mechanism of 316L stainless steel/ARZ composites is mainly the desquamation of 316L stainless steel particles.
[1] |
郭英奎, 李东波, 周玉, 等. ZrO2(2Y)/316L不锈钢复合材料的微观组织. 中国有色金属学报, 2003, 13(4): 963
Guo Y K, Li D B, Zhou Y, et al. Microstructure of ZrO2(2Y)/316L stainless steel composites. Chin J Nonferrous Met, 2003, 13(4): 963
|
[2] |
郭英奎, 赵晓华, 周玉, 等. ZrO2/316L不锈钢复合材料的SEM分析. 哈尔滨理工大学学报. 2002, 7(1): 50
Guo Y K, Zhao X H, Zhou Y, et al. The SEM analysis of ZrO2/316L stainless steel composites. J Harbin Univ Sci Technol, 2002, 7(1): 50
|
[3] |
Kuruvilla A K, Prasad K S, Bhanuprasad V V, et al. Microstructure-property correlation in Al/TiB2(XD) composites. Scr Metall Mater, 1990, 24(5): 873 DOI: 10.1016/0956-716X(90)90128-4
|
[4] |
邓陈虹, 葛启录, 范爱琴. 粉末冶金金属基复合材料的研究现状及发展趋势. 粉末冶金工业, 2011, 21(1): 54
Deng C H, Ge Q L, Fan A Q. Present research status and trend of metal matrix composites by powder metallurgy. Powder Metall Ind, 2011, 21(1): 54
|
[5] |
Kaczmar J W, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol, 2000, 106(1-3): 58 DOI: 10.1016/S0924-0136(00)00639-7
|
[6] |
Zhang L B, Hai J T. Metal matrix composites in China. J Mater Process Technol, 1998, 75(1-3): 1 DOI: 10.1016/S0924-0136(97)00236-7
|
[7] |
曹勇家. 金属注射成形不锈钢. 粉末冶金技术, 2000, 18(4): 274
Cao Y J. Metal injection molding of stainless steels. Powder Metall Technol, 2000, 18(4): 274
|
[8] |
郭振文, 张文泉, 刘雪峰, 等. 316L不锈钢/Y-PSZ复合材料摩擦磨损特性. 工程科学学报, 2008, 30(7): 740
Guo Z W, Zhang W Q, Liu X F, et al. Friction wear behaviors of 316L stainless steel/Y-PSZ composites. Chin J Eng, 2008, 30(7): 740
|
[9] |
蒲泽林, 褚景春, 毛雪平. 颗粒增强金属基复合材料的制备方法综述. 现代电力, 2002, 19(6): 31
Pu Z L, Chu J L, Mao X P. Summarization on preparation for particle reinforced metal matrix composites. Mod Electr Power, 2002, 19(6): 31
|
[10] |
Luo Z C, Ning J P, Wang J, et al. Microstructure and wear properties of TiC-strengthened high-manganese steel matrix composites fabricated by hypereutectic solidification. Wear, 2019, 432-433: 202970 DOI: 10.1016/j.wear.2019.202970
|
[11] |
田常娟, 何新波, 梅敏, 等. 粉末注射成形制备Si3N4颗粒增强316L不锈钢. 工程科学学报, 2011, 33(11): 1373
Tian C J, He X B, Mei M, et al. Si3N4 particle-reinforced 316L stainless steel prepared by powder injection molding. Chin J Eng, 2011, 33(11): 1373
|
[12] |
任澍忻, 陈文革, 冯涛, 等. 粉末冶金制备碳纤维增强铁‒铜基摩擦材料的组织与性能. 粉末冶金技术, 2020, 38(2): 104
Ren S X, Chen W G, Feng T, et al. Microstructure and properties of carbon fiber reinforced Fe‒Cu based friction materials prepared by powder metallurgy. Powder Metall Technol, 2020, 38(2): 104
|
[13] |
马建朝. ZTA颗粒增强高锰钢复合材料制备及其性能研究[学位论文]. 西安: 西安理工大学, 2019
Ma J C. Preparation and Properties of ZTA Particle Reinforced High Manganess Steel Composites [Dissertation]. Xi’ an: Xi’ an University of Technology, 2019
|
[14] |
潘超梅. 316L不锈钢粉末注射成形模拟及实验研究[学位论文]. 昆明: 昆明理工大学, 2016
Pan C M. Simulation and Experimental Study on Injection Molding of 316L Stainless Steel Powder [Dissertation]. Kunming: Kunming University of Science and Technology, 2016
|
[15] |
卢博, 朱建锋, 方媛, 等. 原位合成SiC对铝基复合材料微观组织和力学性能的影响. 粉末冶金技术, 2020, 38(1): 42
Lu B, Zhu J F, Fang Y, et al. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis. Powder Metall Technol, 2020, 38(1): 42
|