Citation: | LIU Wei, LI Shi-lei, ZHOU Fan, YANG Yun-fei, XIE Yuan-feng, XIA Yang, LÜ Hong, ZHANG Chao, ZHANG Xiao-ke, WANG Jin-shu. Process and kinetic analysis of osmium prepared by microwave sintering[J]. Powder Metallurgy Technology, 2021, 39(5): 394-402. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030013 |
[1] |
中国冶金百科全书总编辑委员会《金属材料卷》编辑委员会. 中国冶金百科全书: 金属材料. 北京: 冶金工业出版社, 2001
China Metallurgical Encyclopedia Editor-in-Chief "Metal Materials Volume" Editorial Committee. China Metallurgical Encyclopedia: Metal Materials. Beijing: Metallurgical Industry Press, 2001
|
[2] |
Hämäläinen J, Sajavaara T, Puukilainen E, et al. Atomic layer deposition of osmium. Chem Mater, 2012, 24(1): 55 DOI: 10.1021/cm201795s
|
[3] |
Green M C. The M-type cathode—no longer magic // 1980 International Electron Devices Meeting. Washington, 1980: 471
|
[4] |
Zalm P, Van Stratum A J A. Osmium dispenser cathodes. Philips Technol Rev, 1966, 27: 69
|
[5] |
Ares Fang C S, Maloney C E. Surface studies of Os/Re/W alloy-coated impregnated tungsten cathodes. J Vac Sci Technol A, 1990, 8(3): 2329 DOI: 10.1116/1.576758
|
[6] |
Josell D, Witt C, Moffat T P. Osmium barriers for direct copper electrodeposition in damascene processing. Electrochem Solid-State Lett, 2006, 9(2): 48 DOI: 10.1149/1.2150165
|
[7] |
刘伟, 李俊辉, 王金淑, 等. 微波烧结法制备含钪扩散阴极及其发射性能研究. 稀有金属材料与工程, 2020, 49(5): 1766
Liu W, Li J H, Wang J S, et al. Preparation of scandium dispenser cathode by microwave sintering and its electron emission property. Rare Met Mater Eng, 2020, 49(5): 1766
|
[8] |
Rumman R, Lee C C, Quinton J S, et al. Understanding the potential of microwave sintering on WC–Co. Int J Refract Met Hard Mater, 2019, 81: 7 DOI: 10.1016/j.ijrmhm.2019.02.007
|
[9] |
Soares E, Bouchonneau N, Alves E, et al. Microstructure and mechanical properties of AA7075 aluminum alloy fabricated by spark plasma sintering (SPS). Materials, 2021, 14(2): 430 DOI: 10.3390/ma14020430
|
[10] |
Gao J Y, Yang L, Guo S H, et al. Fabrication of Fe60Cu40 pre-alloy bonded composites for diamond tools by microwave hot press sintering. J Mater Res Technol, 2020, 9(4): 8905 DOI: 10.1016/j.jmrt.2020.06.001
|
[11] |
Hou M, Guo S H, Yang L, et al. Microwave hot press sintering: New attempt for the fabrication of Fe–Cu pre-alloyed matrix in super-hard material. Powder Technol, 2019, 356: 403 DOI: 10.1016/j.powtec.2019.08.055
|
[12] |
Ye J D, Yin Z B, Yuan J T, et al. Effects of metal phases on microstructure and mechanical properties of microwave-sintered Ti(C, N)-based cermet tool. Int J Appl Ceram Technol, 2020, 17(2): 761 DOI: 10.1111/ijac.13387
|
[13] |
Mondal S, Durygin A, Drozd V, et al. Multicomponent bulk metal nitride (Nb1/3Ta1/3Ti1/3)N1−δ synthesis via reaction flash sintering and characterizations. J Am Ceram Soc, 2020, 103(9): 4876 DOI: 10.1111/jace.17226
|
[14] |
庄天涯, 张际亮, 王霏, 等. 金属粉末微波烧结机理研究进展. 粉末冶金技术, 2019, 37(5): 392
Zhuang T Y, Zhang J L, Wang F, et al. Research progress on the microwave sintering mechanism of metal powders. Powder Metall Technol, 2019, 37(5): 392
|
[15] |
El Khaled D, Novas N, Gazquez J A, et al. Microwave dielectric heating: Applications on metals processing. Renewable Sustainable Energy Rev, 2018, 82(3): 2880
|
[16] |
Prabhu G, Chakraborty A, Sarma B. Microwave sintering of tungsten. Int J Refract Met Hard Mater, 2009, 27(3): 545 DOI: 10.1016/j.ijrmhm.2008.07.001
|
[17] |
Roy R, Agrawal D, Cheng J P, et al. Full sintering of powdered-metal bodies in a microwave field. Nature, 1999, 399(6737): 668 DOI: 10.1038/21390
|
[18] |
Chhillar P, Agrawal D, Adair J H. Sintering of molybdenum metal powder using microwave energy. Powder Metall, 2008, 51(2): 182 DOI: 10.1179/174329007X178001
|
[19] |
Duan B H, Zhang Z, Wang D Z, et al. Microwave sintering of Mo nanopowder and its densification behavior. T Nonferrous Met Soc China, 2019, 29(8): 1705 DOI: 10.1016/S1003-6326(19)65077-6
|
[20] |
Hou M, Guo S, Yang L, et al. Fabrication of Fe–Cu matrix diamond composite by microwave hot pressing sintering. Powder Technol, 2018, 338: 36 DOI: 10.1016/j.powtec.2018.06.043
|
[21] |
Wang H, Ren W, Li G, et al. Microstructure and properties of FeCoNi1.5CrCu/2024Al composites prepared by microwave sintering. Mater Sci Eng A, 2021, 801: 140406 DOI: 10.1016/j.msea.2020.140406
|
[22] |
Wang K, Wang X P, Liu R, et al. The study on the microwave sintering of tungsten at relatively low temperature. J Nucl Mater, 2012, 431(1-3): 206 DOI: 10.1016/j.jnucmat.2011.11.012
|