AdvancedSearch
YANG Jie, LIU Guang-xu, ZHANG Jing, WANG Wen-ying, WANG Xiao-feng, ZOU Jin-wen. Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface[J]. Powder Metallurgy Technology, 2021, 39(4): 311-318. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040005
Citation: YANG Jie, LIU Guang-xu, ZHANG Jing, WANG Wen-ying, WANG Xiao-feng, ZOU Jin-wen. Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface[J]. Powder Metallurgy Technology, 2021, 39(4): 311-318. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040005

Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface

More Information
  • Corresponding author:

    WANG Xiao-feng, E-mail: wangxiaofeng_0404@163.com

  • Received Date: April 10, 2021
  • Available Online: May 10, 2021
  • The microstructure on the solid-state diffusion bonding interfaces of the initially as-forged, as-solution, and sub-aging FGH96 was characterized, the tensile properties of the bonding interfaces were tested, and the failure behavior was studied. It is found that the good metallurgical bonding is achieved at the bonding interfaces of all the three primitive state specimens after the solid-state diffusion, and no cracks and cavities are found. The interfaces of the as-forged specimens show more sufficient diffusion of elements and smoother transition of microstructure, while the interfaces of both the as-solution and sub-aging specimens exhibit an obvious bonding effecting zone. After the solid-state diffusion bonding and the standard heat treatment, the second γʹ phases in the as-forged specimens are fine, uniform, and spherical. However, the second γʹ phases in the as-solution and sub-aging specimens grow up and split up because of the solid-state diffusion bonding thermal cycle. Different morphology of the second γʹ phases causes the difference of properties in the bonding interface regions. Results of the electron backscattered diffraction (EBSD) show that the preferred orientation of large grains is {100}, and the grain orientation is more obvious as the closer distance to the solid diffusion interface. The tensile test results show that the strength at the interfaces of the forged specimens after the solid-state diffusion bonding and the standard heat treatment is more than 99% of that of the matrix. The tensile cracks mainly initialize from the aggregated area of the large grains and the coarse γʹ phases, which show the transgranular dimple fracture behavior.
  • [1]
    Reed R C. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006
    [2]
    汪武祥, 何峰, 邹金文. 粉末高温合金的应用与发展. 航空工程与维修, 2002(6): 26

    Wang W X, He F, Zou J W. The application and development of P/M superalloys. Aviat Maint Eng, 2002(6): 26
    [3]
    国为民, 董建新, 吴剑涛, 等. FGH96镍基粉末高温合金的组织和性能. 钢铁研究学报, 2005, 17(1): 59 DOI: 10.3321/j.issn:1001-0963.2005.01.015

    Guo W M, Dong J X, Wu J T, et al. Microstructure and properties of PM superalloys FGH96. J Iron Steel Res, 2005, 17(1): 59 DOI: 10.3321/j.issn:1001-0963.2005.01.015
    [4]
    Preuss M, Withers P J, Pang J W L, et al. Inertia welding nickel-based superalloy: Part 1. Metalurgical characterization. Metall Mater Trans A, 2002, 33: 3215 DOI: 10.1007/s11661-002-0307-y
    [5]
    Senkov O N, Mahaffey D W, Semiatin S L. A comparison of the inertia friction welding behavior of similar and dissimilar nickel-based superalloys. Metall Mater Trans A, 2018, 49: 5428 DOI: 10.1007/s11661-018-4853-3
    [6]
    Li H Y, Huang Z W, Bray S, et al. High temperature fatigue of friction welded joints in dissimilar nickel based superalloys. Mater Sci Technol, 2007, 23(12): 1408 DOI: 10.1179/174328407X243933
    [7]
    Gale W F, Butts D A. Transient liquid phase bonding. Sci Technol Weld Joining, 2004, 9(4): 283 DOI: 10.1179/136217104225021724
    [8]
    Yuan L, Xiong J T, Peng Y, et al. Microstructure and mechanical properties in the solid-state diffusion bonding joints of Ni3Al based superalloy. Mater Sci Eng A, 2020, 772: 138670 DOI: 10.1016/j.msea.2019.138670
    [9]
    Chamanfar A, Jahazi M, Cormier J. A review on inertia and linear friction welding of Ni-based superalloys. Metall Mater Trans A, 2015, 46: 1639 DOI: 10.1007/s11661-015-2752-4
    [10]
    Pouranvari M, Ekrami A, Kokabi A H. Microstructure evolution mechanism during post-bond heat treatment of transient liquid phase bonded wrought IN718 superalloy: An approach to fabricate boride-free joints. J Alloys Compd, 2017, 723: 84 DOI: 10.1016/j.jallcom.2017.06.206
    [11]
    Shirzadi A. Solid-State Diffusion Bonding. Microjoining and Nanojoining. Cambridge: Woodhead Publishing Limited, 2004
    [12]
    Zhang G, Chandel R S, Seow H P. Solid state diffusion bonding of Inconel 718. Sci Technol Weld Joining, 2001, 6(4): 235 DOI: 10.1179/136217101101538820
    [13]
    李卓然, 冯广杰, 徐慨, 等. 高温合金GH4169真空扩散连接工艺. 焊接学报, 2013, 34(6): 21

    Li Z R, Feng G J, Xu K, et al. Vacuum diffusion bonding process of GH4169 superalloy. Trans China Weld Inst, 2013, 34(6): 21
    [14]
    朱源, 张昊, 程晓瞳, 等. 镍箔中间层厚度对GH4099合金固相扩散焊质量的影响. 焊接学报, 2018, 39(4): 93 DOI: 10.12073/j.hjxb.2018390103

    Zhu Y, Zhang H, Cheng X T, et al. Effect of nickel interlayer thickness on solid-state diffusion bonding quality of superalloy GH4099. Trans China Weld Inst, 2018, 39(4): 93 DOI: 10.12073/j.hjxb.2018390103
    [15]
    崔忠圻, 覃耀春. 金属学与热处理. 2版. 北京: 机械工业出版社, 2007

    Cui Z Q, Qin Y C. Metallurgy and Heat Treatment. 2nd Ed. Beijing: China Machine Press, 2007
  • Related Articles

    [1]WANG Jie, HUANG Hailiang, ZHANG Hua, ZHANG Shangzhou, ZHOU Xin, JIANG Liang. Microstructure evolution of FGH96 alloys during heat treatment[J]. Powder Metallurgy Technology, 2023, 41(5): 393-401. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050008
    [2]LIU Guangxu, WANG Xiaofeng, YANG Jie, ZOU Jinwen. Effect of local interference on the surface microstructure of FGH96 alloys in quenching process[J]. Powder Metallurgy Technology, 2023, 41(2): 143-148. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090012
    [3]LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. DOI: 10.19591/j.cnki.cn11–1974/tf.2021040006
    [4]TIAN Gao-feng, CHEN Yang, WANG Yu. Research on microstructure characterization in residual dendrite zones of FGH96 alloy with gradient microstructure[J]. Powder Metallurgy Technology, 2018, 36(6): 403-408. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.001
    [5]WANG Yan, GUO Chun, KONG De-cheng, ZHAO Zhen-jiang, WANG Li, DONG Chao-fang. Microstructures and corrosion failure analysis of zinc anode[J]. Powder Metallurgy Technology, 2018, 36(5): 348-354. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.005
    [6]ZHOU Lei, WANG Yu, ZOU Jin-wen. Effect of carbon content on the microstructure and mechanical properties of powder metallurgy superalloy FGH96[J]. Powder Metallurgy Technology, 2017, 35(1): 46-52. DOI: 10.3969/j.issn.1001-3784.2017.01.008
    [7]Wang Xiaona, Li Fuguo, Liu Yuhong. Deformation and microstructural evolution in alloy FGH96 under isothermal forging conditions[J]. Powder Metallurgy Technology, 2008, 26(3): 196-200,233.
    [8]Wang Zhanhong, Wang Li, Wu Yanqing, Qu Xuanhui. Tensile test and SEM in situ fatigue failure analysis of beryllium-aluminum alloy at room temperature[J]. Powder Metallurgy Technology, 2007, 25(3): 163-166. DOI: 10.3321/j.issn:1001-3784.2007.03.001
    [9]Failure Analyzing of Self-lubrication Material[J]. Powder Metallurgy Technology, 2001, 19(5): 270-272. DOI: 10.3321/j.issn:1001-3784.2001.05.004
    [10]THE ANALYSIS OF MICROSTRUCTURE AND INCLUSION OF FGH96—POWDER OF 750℃SUPERALLOY[J]. Powder Metallurgy Technology, 2001, 19(2): 70-73. DOI: 10.3321/j.issn:1001-3784.2001.02.002
  • Cited by

    Periodical cited type(2)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谭欣宇,李鹏,马月婷,黄立兵,吴宝生,董红刚. FGH98粉末高温合金瞬时液相扩散焊接头组织和性能. 焊接学报. 2023(11): 96-103+134 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (382) PDF downloads (39) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return