Citation: | ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009 |
[1] |
Lu X, Yao D, Chen Y, et al. Microstructure and hardness of Cu‒12%Fe composite at different drawing strains. J Zhejiang Univ Sci, 2014, 15: 149 DOI: 10.1631/jzus.A1300164
|
[2] |
Funkenbusch P D, Courtney T H. Microstructural strengthening in cold worked in situ Cu‒14.8 Vol. % Fe composites. Scr Mater, 1981, 15(12): 1349
|
[3] |
胡号, 李雷, 许磊, 等. Cu‒Fe合金制备技术研究进展. 粉末冶金技术, 2019, 37(6): 468
Hu H, Li L, Xu L, et al. Research progress on preparation technology of Cu‒Fe alloy. Powder Metall Technol, 2019, 37(6): 468
|
[4] |
何统求, 王丽, 彭传校, 等. Fe‒Cu合金相分离过程. 材料工程, 2016, 44(2): 115 DOI: 10.11868/j.issn.1001-4381.2016.02.018
He T Q, Wang L, Peng C X, et al. Fe‒Cu alloy phase separation process. Mater Eng, 2016, 44(2): 115 DOI: 10.11868/j.issn.1001-4381.2016.02.018
|
[5] |
Nakagawa Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Metall, 1958, 6(11): 704 DOI: 10.1016/0001-6160(58)90061-0
|
[6] |
Wang W, Wu Y, Li L. Liquid-liquid phase separation of freely falling undercooled ternary Fe‒Cu‒Sn alloy. Sci Rep, 2015, 5: 16335 DOI: 10.1038/srep16335
|
[7] |
Wang M, Zhang R, Xiao Z, et al. Microstructure and properties of Cu‒10wt%Fe alloy produced by double melt mixed casting and multi-stage thermomechanical treatment. J Alloys Compd, 2020, 820: 153323 DOI: 10.1016/j.jallcom.2019.153323
|
[8] |
Wang M, Jiang Y, Li Z, et al. Microstructure evolution and deformation behaviour of Cu‒10wt%Fe alloy during cold rolling. Mater Sci Eng A, 2021, 801: 140379 DOI: 10.1016/j.msea.2020.140379
|
[9] |
Zou J, Lu D, Fu Q, et al. Microstructure and properties of Cu–Fe deformation processed in-situ composite. Vacuum, 2019, 167: 54 DOI: 10.1016/j.vacuum.2019.05.030
|
[10] |
Liu S, Jie J, Guo Z, et al. A comprehensive investigation on microstructure and magnetic properties of immiscible Cu‒Fe alloys with variation of Fe content. Mater Chem Phys, 2019, 238: 121909 DOI: 10.1016/j.matchemphys.2019.121909
|
[11] |
Liu S, Jie J, Guo Z, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions. J Alloys Compd, 2018, 742: 99 DOI: 10.1016/j.jallcom.2018.01.306
|
[12] |
Liu S, Jie J, Dong B, et al. Novel insight into evolution mechanism of second liquid-liquid phase separation in metastable immiscible Cu‒Fe alloy. Mater Des, 2018, 156: 71 DOI: 10.1016/j.matdes.2018.06.044
|
[13] |
Benghalem A, Morris D. Microstructure and strength of wire-drawn Cu‒Ag filamentary composites. Acta Mater, 1997, 45(1): 397 DOI: 10.1016/S1359-6454(96)00152-8
|
[14] |
Funkenbusch P, Courtney T. Reply to comments on “on the role of interphase barrier and substructural strengthening in deformation processed composite materials. Scr Metall Mater, 1990, 24: 1175 DOI: 10.1016/0956-716X(90)90322-8
|
[15] |
Han K, Vasquez A, Xin Y, et al. Microstructure and tensile properties of nanostructured Cu‒25wt%Ag. Acta Mater, 2003, 51(3): 767 DOI: 10.1016/S1359-6454(02)00468-8
|
[16] |
Abbas S F, Park K T, Kim T S, et al. Effect of composition and powder size on magnetic properties of rapidly solidified copper-iron alloys. J Alloys Compd, 2018, 741: 1188 DOI: 10.1016/j.jallcom.2018.01.245
|
[17] |
Rowlands G. The variation of coercivity with particle size. J Phys D Appl Phys, 1976, 9: 1267 DOI: 10.1088/0022-3727/9/8/013
|
[18] |
Dai X, Xie M, Zhou S, et al. Formation mechanism and improved properties of Cu95Fe5 homogeneous immiscible composite coating by the combination of mechanical alloying and laser cladding. J Alloys Compd, 2018, 740: 194 DOI: 10.1016/j.jallcom.2018.01.007
|