AdvancedSearch
WANG Shi-ze, ZHAO Xing-ke, ZHAO Zeng-lei, WU Ping. Spherical molybdenum powders prepared by pulse laser wire cutting[J]. Powder Metallurgy Technology, 2022, 40(3): 232-238. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050009
Citation: WANG Shi-ze, ZHAO Xing-ke, ZHAO Zeng-lei, WU Ping. Spherical molybdenum powders prepared by pulse laser wire cutting[J]. Powder Metallurgy Technology, 2022, 40(3): 232-238. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050009

Spherical molybdenum powders prepared by pulse laser wire cutting

More Information
  • Corresponding author:

    ZHAO Xing-ke, E-mail: xkzhao@ustb.edu.cn

  • Received Date: May 25, 2021
  • Accepted Date: May 25, 2021
  • Available Online: July 04, 2021
  • To obtain the high performance solid spherical molybdenum powder raw materials, the spherical molybdenum powders were prepared by the pulse laser wire cutting. The particle size, morphology, microstructure, and other physical properties of the molybdenum powders were studied by sieving, optical microscope, and scanning electron microscope, respectively. The results show that the morphology of molybdenum powders prepared by the pulse laser wire cutting is spherical or nearly spherical, and the surface is smooth without the satellite particles or particle aggregation. In the range of the experimental process parameters, more than 90% molybdenum powder particles are over 150 µm in size, and the particles in the range of 150~300 µm account for the largest proportion, more than 60%. Molybdenum particles with the particle size less than 400 µm are usually internally dense, while the internal holes appear in some larger particles. The formation mechanism of molybdenum particles and internal holes is preliminarily analyzed.
  • [1]
    冯鹏发, 孙军. 钼及钼合金粉末冶金技术研究现状与发展. 中国钼业, 2010, 34(3): 39 DOI: 10.3969/j.issn.1006-2602.2010.03.009

    Feng P F, Sun J. Progress and prospect of research and application of powder metallurgy processes of Mo and Its alloys. China Molybd Ind, 2010, 34(3): 39 DOI: 10.3969/j.issn.1006-2602.2010.03.009
    [2]
    董帝, 王承阳. 钼合金制备工艺的研究进展. 粉末冶金技术, 2017, 35(4): 304

    Dong D, Wang C Y. Research progress on preparation technology of molybdenum alloy. Powder Metall Technol, 2017, 35(4): 304
    [3]
    张宇晴, 王芦燕, 李曹兵. 等离子球化钼粉3D打印工艺适配性研究. 热喷涂技术, 2020, 12(2): 69

    Zhang Y Q, Wang L Y, Li C B. Study on suitability between technological parameters of 3D printing and molybdenum powder by plasma spheroidizing. Therm Spray Technol, 2020, 12(2): 69
    [4]
    武洲, 卜春阳, 李晶. 气流磨处理对钼粉物理性能的影响. 稀有金属材料与工程, 2010, 39(增刊1): 451

    Wu Z, Bu C Y, Li J. Effect of jet milling processing on the physical properties of molybdenum powder. Rare Met Mater Eng, 2010, 39(Suppl 1): 451
    [5]
    庄飞, 杨秦莉, 赵虎, 等. 球形钼粉物性指标的影响因素分析. 铸造技术, 2013, 34(8): 977

    Zhuang F, Yang Q L, Zhao H, et al. Analysis of effect factors on properties of spherical molybdenum powder. Foundry Technol, 2013, 34(8): 977
    [6]
    席莎, 曹维成, 张晓, 等. 钼粉粒径对钼坩埚组织性能的影响. 中国钼业, 2017, 41(1): 42

    Xi S, Cao W C, Zhang X, et al. The effect of molybdenum powder particle size on the properties of molybdenum crucible. China Molybd Ind, 2017, 41(1): 42
    [7]
    付静波, 庄飞, 张晓. 黏结剂含量对喷雾造粒钼粉形貌和物理性能的影响. 中国粉体技术, 2013, 19(4): 81 DOI: 10.3969/j.issn.1008-5548.2013.04.020

    Fu J B, Zhuang F, Zhang X. Effects of binder content on morphology and physical property of spray granulated molybdenum powders. China Powder Sci Technol, 2013, 19(4): 81 DOI: 10.3969/j.issn.1008-5548.2013.04.020
    [8]
    赵盘巢, 易伟, 陈家林. 喷雾干燥结合微波煅烧氢还原法制备微米级球形钼粉. 稀有金属材料与工程, 2017, 46(10): 3123

    Zhao P C, Yi W, Chen J L. Preparation of spherical molybdenum powder by spray drying and microwave calcination hydrogen reduction. Rare Met Mater Eng, 2017, 46(10): 3123
    [9]
    盛艳伟, 郭志猛, 郝俊杰, 等. 射频等离子体制备球形Mo粉的研究. 粉末冶金工业, 2011, 21(6): 6 DOI: 10.3969/j.issn.1006-6543.2011.06.002

    Sheng Y W, Guo Z M, Hao J J, et al. Characterization of spherical molybdenum powders prepared by RF plasma processing. Powder Metall Ind, 2011, 21(6): 6 DOI: 10.3969/j.issn.1006-6543.2011.06.002
    [10]
    陈文波, 陈伦江, 刘川东, 等. 射频等离子体球化中钼粉颗粒加热过程的数值模拟. 稀有金属材料与工程, 2019, 48(3): 859

    Chen W B, Chen L J, Liu C D, et al. Numerical simulation of heating process of molybdenum powder in radio frequency plasma spheroidization. Rare Met Mater Eng, 2019, 48(3): 859
    [11]
    叶凯, 梁风, 姚耀春, 等. 热等离子体制备与球化超细难熔金属粉的研究进展. 中国有色金属学报, 2020, 30(9): 2011 DOI: 10.11817/j.ysxb.1004.0609.2020-37618

    Ye K, Liang F, Yao Y C, et al. Research progress of preparing and spheroidizing ultrafine refractory metal powder by thermal plasma. Chin J Nonferrous Met, 2020, 30(9): 2011 DOI: 10.11817/j.ysxb.1004.0609.2020-37618
    [12]
    陈强, 冯鹏发, 武洲, 等. 热等离子法制备高致密球形钼粉颗粒. 中国粉体技术, 2013, 19(1): 42 DOI: 10.3969/j.issn.1008-5548.2013.01.010

    Chen Q, Feng P F, Wu Z, et al. Preparation of high density spherical molybdenum particles using thermal plasma method. China Powder Sci Technol, 2013, 19(1): 42 DOI: 10.3969/j.issn.1008-5548.2013.01.010
    [13]
    付静波, 张晓, 庄飞. 松比大、纯度高、球形团聚钼粉制备工艺研究. 粉末冶金工业, 2013, 23(5): 8 DOI: 10.3969/j.issn.1006-6543.2013.05.002

    Fu J B, Zhang X, Zhuang F. Research on agglomerated spherical molybdenum powder with high apparent density and high purity. Powder Metall Ind, 2013, 23(5): 8 DOI: 10.3969/j.issn.1006-6543.2013.05.002
    [14]
    Liu X P, Wang K S, Hu P, et al. Spheroidization of molybdenum powder by radio frequency thermal plasma. Int J Miner Metall Mater, 2015, 22(11): 1212 DOI: 10.1007/s12613-015-1187-7
    [15]
    Hao Z H, Fu Z H, Liu J T, et al. Spheroidization of a granulated molybdenum powder by radio frequency inductively coupled plasma. Int J Refract Met Hard Mater, 2019, 82: 15 DOI: 10.1016/j.ijrmhm.2019.03.023
    [16]
    刘晓平, 王快社, 胡平, 等. 感应等离子体工艺对制备致密球形钼粉的影响. 金属热处理, 2015, 40(10): 76

    Liu X P, Wang K S, Hu P, et al. Effect of induction plasma process on preparation of dense spherical molybdenum powder. Heat Treat Met, 2015, 40(10): 76
    [17]
    史振琦, 黄晓玲, 刘涛. 钼粉团聚体对钼圆片组织的影响. 中国钼业, 2018, 42(4): 53

    Shi Z Q, Huang X L, Liu T. The effect of molybdenum powder agglomeration on microstructure of molybdenum disc. China Molybd Ind, 2018, 42(4): 53
    [18]
    刘仁智, 安耿, 李晶, 等. 不同粒度钼粉对板材组织的影响. 中国钼业, 2010, 34(5): 52 DOI: 10.3969/j.issn.1006-2602.2010.05.012

    Liu R Z, An G, Li J, et al. Influence of molybdenum powder with different grain sizes on plates structure. China Molybd Ind, 2010, 34(5): 52 DOI: 10.3969/j.issn.1006-2602.2010.05.012
    [19]
    罗锋, 刘俊怀, 马会. 低钾大粒度钼粉降本增效工艺研究. 中国钼业, 2014, 38(3): 47

    Luo F, Liu J H, Ma H. Study on technology of low-potassium large-grained molybdenum powder production for cost decreasing and benefit increasing. China Molybd Ind, 2014, 38(3): 47
    [20]
    金园园, 贺卫卫, 陈斌科, 等. 球形难熔金属粉末的制备技术. 航空制造技术, 2019, 62(22): 64

    Jin Y Y, He W W, Chen B K, et al. Preparation of spherical refractory metal powders. Aeronaut Manuf Technol, 2019, 62(22): 64
    [21]
    de Souza J, Oliveira-Motta C A, Machado T G, et al. Analysis of metallic waste from laser cutting for utilization in parts manufactured by conventional powder metallurgy. Int J Res Eng Sci, 2016, 4(11): 1
    [22]
    Abbasov V, Zeynalov E, Abdullayeva N. Comparative catalytic activity of metal-containing catalysts of different nature in the liquid-phase aerobic oxidation of ethylbenzene. Open Mater Sci J, 2014, 8(1): 27 DOI: 10.2174/1874088X01408010027
    [23]
    徐志昌, 张萍. 喷雾法制备活塞环用MP43喷镀合金钼粉. 中国钼业, 2005, 29(6): 36 DOI: 10.3969/j.issn.1006-2602.2005.06.010

    Xu Z C, Zhang P. The preparation of spraying alloy molybdenum powder by spray method. China Molybd Ind, 2005, 29(6): 36 DOI: 10.3969/j.issn.1006-2602.2005.06.010
    [24]
    张晓, 付静波, 庄飞. 热处理对喷雾干燥钼粉的影响. 中国钼业, 2015, 39(4): 50

    Zhang X, Fu J B, Zhuang F. Effect of heat treatment on spray dried Mo powder. China Molybd Ind, 2015, 39(4): 50
    [25]
    李少龙, 苏国平. 喷镀钼粉流动性的提高途径. 中国钼业, 2003, 27(2): 39 DOI: 10.3969/j.issn.1006-2602.2003.02.011

    Li S L, Su G P. Method of improving fluidity of spraying molybdenum powder. China Molybd Ind, 2003, 27(2): 39 DOI: 10.3969/j.issn.1006-2602.2003.02.011
  • Related Articles

    [1]CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090018
    [2]LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003
    [3]YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
    [4]SI Jia-jia, SU Xiao-lei. Preparation of ultrafine spherical nickel powders[J]. Powder Metallurgy Technology, 2021, 39(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090003
    [5]SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080008
    [6]ZHANG Bao-hong, TANG Liang-liang. Study on the erosion morphology of W-Ni-Sr electrode[J]. Powder Metallurgy Technology, 2020, 38(4): 289-294. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050007
    [7]LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
    [8]Hydrothermal synthesis of micro-copper powders with special morphology[J]. Powder Metallurgy Technology, 2010, 28(3): 200-203.
    [9]Du Huiling, Wang Jianzhong, Chen Danfeng, Cang Daqiang. Effects of pulsed electromagnetic field on morphology of cobalt oxalate powders[J]. Powder Metallurgy Technology, 2010, 28(2): 96-100.
    [10]Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202.
  • Cited by

    Periodical cited type(5)

    1. 王哲昊,吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望. 材料导报. 2024(11): 52-61 .
    2. 陈开旺,张鹏林,李树旺,牛显明,胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能. 材料研究学报. 2023(01): 39-46 .
    3. 张一帆,王曲,王刚,刘鹏程,张琪,司瑶晨. 黏结剂种类对铝酸镧涂层材料性能的影响. 耐火材料. 2022(02): 123-126 .
    4. 张志辉,李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析. 粉末冶金技术. 2022(04): 351-355+361 . 本站查看
    5. 蔡浩,龚关,梁雅琪,仇秀梅,刘可. 莫来石在醇基铸造涂料中的试验研究. 中国新技术新产品. 2022(21): 26-28+145 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (821) PDF downloads (124) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return