AdvancedSearch
CHEN Bing-wei, HAN Jin-jiang, YU Wei, ZHU Zhen-dong, LI Zheng-xin, WANG Hui. Effects of diamond surface modification and matrix alloying on the thermal conductivity of copper/diamond composites[J]. Powder Metallurgy Technology, 2022, 40(3): 258-266. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070011
Citation: CHEN Bing-wei, HAN Jin-jiang, YU Wei, ZHU Zhen-dong, LI Zheng-xin, WANG Hui. Effects of diamond surface modification and matrix alloying on the thermal conductivity of copper/diamond composites[J]. Powder Metallurgy Technology, 2022, 40(3): 258-266. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070011

Effects of diamond surface modification and matrix alloying on the thermal conductivity of copper/diamond composites

More Information
  • Corresponding author:

    LI Zheng-xin, E-mail: zhengxin_li@haut.edu.cn

  • Received Date: July 17, 2021
  • Accepted Date: July 17, 2021
  • Available Online: November 07, 2021
  • Diamond particles were roughened with Pr6O11 as the etching agent, and the diamond/copper (boron) composites with the diamond volume fraction of 60.0% and the boron volume fraction of 0.3% were prepared by spark plasma sintering. The effects of diamond surface modification and matrix boron alloying on the thermal conductivity of the diamond/copper composites were investigated by the experiments, thermal flux simulations, and phonon density of states. The results show that, the roughness of the diamond interface increases the contact area; the B4C phases appear after the sintering when the boron element is added in the matrix, and the formation of the B4C phases improves the bonding state of the diamond‒copper interface. The interaction of diamond roughness and matrix alloying can effectively reduce the interfacial thermal resistance, optimize the efficiency of heat flux transfer, and improve the thermal conductivity of composites. The thermal conductivity of diamond/copper composites increases from 421 W·m−1·K−1 to 598 W·m−1·K−1, increasing by nearly 42%.
  • [1]
    肖长江, 陈贻光, 栗晓龙, 等. 镀Ni金刚石与铜基结合剂间把持力的提高方法和机理分析. 粉末冶金技术, 2020, 38(1): 25 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.004

    Xiao C J, Chen Y G, Li X L, et al. Method and mechanism analysis of improving the holding force between Ni-coated diamond and Cu-matrix bonding. Powder Metall Technol, 2020, 38(1): 25 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.004
    [2]
    Chang G, Sun F Y, Wang L H, et al. Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications. ACS Appl Mater Interfaces, 2019, 11(29): 26507 DOI: 10.1021/acsami.9b08106
    [3]
    Chang G, Sun F Y, Duan J L, et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond. Acta Mater, 2018, 160: 235 DOI: 10.1016/j.actamat.2018.09.004
    [4]
    Cheng Z, Bai T Y, Shi J L, et al. Tunable thermal energy transport across diamond membranes and diamond-Si interfaces by nanoscale graphoepitaxy. ACS Appl Mater Interfaces, 2019, 11(20): 18517 DOI: 10.1021/acsami.9b02234
    [5]
    Zhang L, Wei Q P, An J J, et al. Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management. Chem Eng J, 2020, 380: 122551 DOI: 10.1016/j.cej.2019.122551
    [6]
    Chen L, Chen S T, Hou Y. Understanding the thermal conductivity of diamond/copper composite by first-principles calculations. Carbon, 2019, 148: 249 DOI: 10.1016/j.carbon.2019.03.051
    [7]
    Merabia S, Termentzidis K. Thermal boundary conductance across rough interfaces probed by molecular dynamics. Phys Rev B, 2014, 89: 054309 DOI: 10.1103/PhysRevB.89.054309
    [8]
    Lee E, Zhang T, Hu M, et al. Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces-analytical study combined with molecular dynamics simulation. Phys Chem Chem Phys, 2016, 18(25): 16794 DOI: 10.1039/C6CP01927G
    [9]
    Zhang C, Wang R C, Peng C Q, et al. Influence of titanium coating on the microstructure and thermal behavior of Dia. /Cu composites. Diamond Relat Mater, 2019, 97: 107449 DOI: 10.1016/j.diamond.2019.107449
    [10]
    Wu X Z, Li L Y, Zhang W, et al. Effect of surface roughening on the interfacial thermal conductance of diamond/copper composites. Diamond Relat Mater, 2019, 98: 107467 DOI: 10.1016/j.diamond.2019.107467
    [11]
    Wu X Z, Wan D Q, Zhang W, et al. Constructing efficient heat transfer channels at the interface of diamond/Cu composites. Compos Interfaces, 2021, 28(6): 625 DOI: 10.1080/09276440.2020.1795466
    [12]
    Li J W, Wang X T, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scr Mater, 2015, 109: 72 DOI: 10.1016/j.scriptamat.2015.07.022
    [13]
    Chung C Y, Lee M T, Tsai M Y, et al. High thermal conductive diamond/Cu–Ti composites fabricated by pressureless sintering technique. Appl Thermal Eng, 2014, 69(1-2): 208 DOI: 10.1016/j.applthermaleng.2013.11.065
    [14]
    Ciupinski Ł, Kruszewski M J, Grzonka J, et al. Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications. Mater Des, 2017, 120: 170 DOI: 10.1016/j.matdes.2017.02.005
    [15]
    Li L Y, Chen X, Zhang W, et al. Characterization and formation mechanism of pits on diamond {100} face etched by molten potassium nitrite. Int J Refract Met Hard Mater, 2018, 71: 129 DOI: 10.1016/j.ijrmhm.2017.11.011
    [16]
    Liu D, Gou L, Xu J J, et al. Investigations on etching resistance of undoped and boron doped polycrystalline diamond films by oxygen plasma etching. Vacuum, 2016, 128: 80 DOI: 10.1016/j.vacuum.2016.03.012
    [17]
    Bai G Z, Li N, Wang X T, et al. High thermal conductivity of Cu–B/diamond composites prepared by gas pressure infiltration. J Alloys Compd, 2018, 735: 1648 DOI: 10.1016/j.jallcom.2017.11.273
    [18]
    Fan Y M, Guo H, Xu J, et al. Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration. Int J Miner Metall Mater, 2011, 18(4): 472 DOI: 10.1007/s12613-011-0465-2
    [19]
    Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater, 1987, 21(6): 508 DOI: 10.1177/002199838702100602
    [20]
    MonachonC, Weber L, Dames C. Thermal boundary conductance: a materials science perspective. Annu Rev Mater Res, 2016, 46(1): 433 DOI: 10.1146/annurev-matsci-070115-031719
    [21]
    梁远龙, 姜国圣. 表面镀钨金刚石/铜复合材料的有限元模拟. 粉末冶金技术, 2019, 37(4): 283

    Liang Y L, Jiang G S. Finite element simulation of tungsten-coated diamond/copper composites. Powder Metall Technol, 2019, 37(4): 283

Catalog

    Article Metrics

    Article views (1167) PDF downloads (85) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return