AdvancedSearch
WANG Jianzhong, AO Qingbo, MA Jun, LI Aijun. Preparation and compressive properties of Ti alloy fiber porous materials[J]. Powder Metallurgy Technology, 2023, 41(2): 125-130. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080005
Citation: WANG Jianzhong, AO Qingbo, MA Jun, LI Aijun. Preparation and compressive properties of Ti alloy fiber porous materials[J]. Powder Metallurgy Technology, 2023, 41(2): 125-130. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080005

Preparation and compressive properties of Ti alloy fiber porous materials

More Information
  • Corresponding author:

    AO Qingbo, E-mail: panpan0605@163.com

  • Received Date: December 21, 2021
  • Available Online: September 15, 2021
  • To reduce the cost of Ti and Ti alloy products, the Ti chips (cutting fibers) from the surface of Ti ingots were used as the raw materials to prepare the Ti alloy fiber porous materials by cleaning, cutting, pressing, and high temperature confined sintering. The microstructures were observed, the influence of pressing pressure on porosity was analyzed, and the effects of sintering temperature, fiber width, and porosity on the compressive properties of the Ti alloy fiber porous materials were systemically studied. The results show that, the interior of Ti alloy fiber porous materials is the through-pore. As the increase of the pressing pressure, the porosity of the Ti alloy fiber porous materials decreases. The compressive platform stress of the Ti alloy fiber porous materials sintered at 1200 ℃ is up to 17.34 MPa with the fiber width of 2 mm and the porosity of 56.0%. The titanium alloy fiber porous materials are prepared at zero cost for the raw materials in this paper, which can be applied in the fields of damping, vibration reduction, and impact protection.

  • [1]
    郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景. 热加工工艺, 2020, 49(22): 22 DOI: 10.14158/j.cnki.1001-3814.20192060

    Guo L, He W X, Zhou P, et al. Research status and development prospect of titanium and titanium alloy products in China. Hot Working Technol, 2020, 49(22): 22 DOI: 10.14158/j.cnki.1001-3814.20192060
    [2]
    刘永宁, 王智祥, 刘锦平, 等. 造孔剂法制备泡沫钛的研究现状与进展. 粉末冶金技术, 2019, 37(4): 306

    Liu Y N, Wang Z X, Liu J P, et al. Research status and progress of titanium foams prepared by space holder technique. Powder Metall Technol, 2019, 37(4): 306
    [3]
    任军帅, 张英明, 谭江, 等. 生物医用钛合金材料发展现状及趋势. 材料导报, 2016, 38(28): 384

    Ren J S, Zhang Y M, Tan J, et al. Current research status and trend of titanium alloys for biomendical applications. Mater Rev, 2016, 38(28): 384
    [4]
    韩建业, 罗锦华, 袁思波, 等. 口腔用钛及钛合金材料的研究现状. 钛工业进展, 2016, 33(3): 1 DOI: 10.13567/j.cnki.issn1009-9964.2016.03.001

    Han J Y, Luo J H, Yuan S B, et al. Research status of dental titanium and titanium alloys. Titanium Ind Prog, 2016, 33(3): 1 DOI: 10.13567/j.cnki.issn1009-9964.2016.03.001
    [5]
    武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.011

    Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.011
    [6]
    李献民, 刘立, 董洁, 等. 钛及钛合金材料经济性及低成本方法论述. 中国材料进展, 2015, 34(5): 401

    Li X M, Liu L, Dong J, et al. Discussion on economic analysis and decreasing cost process of titanium and titanium alloys. Mater China, 2015, 34(5): 401
    [7]
    任鑫明, 马北越, 张博文, 等. 多孔钛及钛合金的研究进展. 稀有金属与硬质合金, 2018, 46(1): 61

    Ren X M, Ma B Y, Zhang B W, et al. Research progress of porous titanium and titanium alloy. Rare Met Cement Carb, 2018, 46(1): 61
    [8]
    匡蒙生, 胡伟民, 郭爱红, 等. 钛及钛合金在美海军舰船上的应用. 鱼雷技术, 2012, 20(5): 331

    Kuang M S, Hu W M, Guo A H, et al. Application of titanium and titanium alloys to ships of US navy. Torpedo Technol, 2012, 20(5): 331
    [9]
    Wang J Z, Ao Q B, Ma J, et al. Sound absorption performance of porous metal fiber materials with different structures. Appl Acoust, 2019, 145: 431 DOI: 10.1016/j.apacoust.2018.10.014
    [10]
    敖庆波, 王建忠, 马军, 等. 不锈钢纤维多孔材料的阻尼减振性能. 热加工工艺, 2021, 50(8): 30 DOI: 10.14158/j.cnki.1001-3814.20190704

    Ao Q B, Wang J Z, Ma J, et al. Vibration-damping properties of stainless steel fiber porous materials. Hot Working Technol, 2021, 50(8): 30 DOI: 10.14158/j.cnki.1001-3814.20190704
    [11]
    吴依琳, 李永贵, 麻文效. 金属纤维混纺电磁屏蔽织物的研究进展. 纺织科技进展, 2020(6): 1 DOI: 10.3969/j.issn.1673-0356.2020.06.002

    Wu Y L, Li Y G, Ma W X. Research progress of metal fiber blended electromagnetic shielding fabric. Prog Text Sci Technol, 2020(6): 1 DOI: 10.3969/j.issn.1673-0356.2020.06.002
    [12]
    奚正平, 汤慧萍, 朱纪磊, 等. 金属多孔材料在能源与环保中的应用. 稀有金属材料与工程, 2006, 35(增刊 2): 413 DOI: 10.3321/j.issn:1002-185X.2006.z2.101

    Xi Z P, Tang H P, Zhu J L, et al. Application of metal porous materials in energy and environmental protection. Rare Met Mater Eng, 2006, 35(Suppl 2): 413 DOI: 10.3321/j.issn:1002-185X.2006.z2.101
    [13]
    马军, 王建忠, 敖庆波, 等. 一种具有高能量吸收特性的低成本钛基多孔材料制备工艺: 中国专利, 202011178503. X. 2020-10-29

    Ma J, Wang J Z, Ao Q B, et al. A Preparation Process of Low-Cost Titanium Based Porous Material with High Energy Absorption Characteristics: China Patent, 202011178503. X. 2020-10-29
    [14]
    Wang J Z, Tang H P, Ma Q, et al. Fabrication of high strength and ductile stainless steel fiber felts by sintering. JOM, 2016, 68(3): 890 DOI: 10.1007/s11837-015-1803-z
    [15]
    汤慧萍. 金属纤维多孔材料. 北京: 冶金工业出版社, 2016

    Tang H P. Porous Metal Fiber Materials. Beijing: Metallurgical Industry Press, 2016
    [16]
    乔吉超, 奚正平, 汤慧萍, 等. 金属纤维多孔材料的压缩行为. 稀有金属材料与工程, 2008, 37(12): 2173 DOI: 10.3321/j.issn:1002-185X.2008.12.024

    Qiao J C, Xi Z P, Tang H P, et al. Compressive behavior of porous metal fibers. Rare Met Mater Eng, 2008, 37(12): 2173 DOI: 10.3321/j.issn:1002-185X.2008.12.024
    [17]
    王建永, 汤慧萍, 朱纪磊, 等. 孔隙度对烧结不锈钢纤维多孔材料压缩性能的影响. 粉末冶金技术, 2009, 27(5): 323 DOI: 10.19591/j.cnki.cn11-1974/tf.2009.05.001

    Wang J Y, Tang H P, Zhu J L, et al. Effect of porosity on compressive properties of porous sintered stainless steel fiber media. Powder Metall Technol, 2009, 27(5): 323 DOI: 10.19591/j.cnki.cn11-1974/tf.2009.05.001
    [18]
    王建忠, 许忠国, 敖庆波, 等. 金属纤维多孔材料力学性能研究现状. 稀有金属材料与工程, 2016, 45(6): 1636

    Wang J Z, Xu Z G, Ao Q B, et al. Status quo of mechanical properties of porous metal fibrous materials. Rare Met Mater Eng, 2016, 45(6): 1636
    [19]
    王建忠, 敖庆波, 马军, 等. 不锈钢纤维多孔材料的准静态压缩性能. 功能材料, 2018, 49(9): 107 DOI: 10.3969/j.issn.1001-9731.2018.09.019

    Wang J Z, Ao Q B, Ma J, et al. Quasi-static compressive performance of porous stainless steel fiber materials. J Funct Mater, 2018, 49(9): 107 DOI: 10.3969/j.issn.1001-9731.2018.09.019
  • Related Articles

    [1]TANG Xuezhi, WANG Zhijun, ZHANG Xuepeng, XU Yongjie. Dynamic compressive behavior of PTFE/Cu composite materials[J]. Powder Metallurgy Technology, 2024, 42(2): 153-158, 164. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080008
    [2]LI Yuhua, HE Yuxin, ZHANG Qian, ZHAO Rong, WANG Haojie, CHU Jinghui, NIU Libin. 2D and 3D finite element comparative analysis of compressive properties of porous titanium[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030007
    [3]Preparation of Al2O3/Cu porous composites by the combination of solution combustion synthesis and powder metallurgy method[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100012
    [4]Study on mechanical properties of aluminum foam filled tubes with different bonding methods[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024090007
    [5]ZHANG Mai, LIANG Jiamiao, LIU Mohan, LI Dong, BAIXIAO Chengti, XU Kai, WANG Jun. Effects of powder size and sintering temperature on microstructure and properties of porous K418 superalloys[J]. Powder Metallurgy Technology, 2023, 41(5): 442-448. DOI: 10.19591/j.cnki.cn11-1974/tf.2022040002
    [6]LIANG Jiamiao, BAI Xiaochengti, XU Jiongkai, ZHANG Liang, WU Wenheng, WANG Jun. Pore structure and performance of porous GH4169 superalloys preparedby laser additive manufacturing[J]. Powder Metallurgy Technology, 2023, 41(4): 356-362, 371. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010002
    [7]NI Xiao-qing, KONG De-cheng, WEN Ying, DONG Chao-fang, ZHANG Liang, LU Lin, SONG Jia, WU Wen-heng. Influence factors and improvement methods on the porosity of 3D printing metal materials[J]. Powder Metallurgy Technology, 2019, 37(3): 163-169,183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.001
    [8]Wang Jianyong, Tang Huiping, Zhu Jilei, Qiao Jichao, Zang Chunyong, Ao Qingbo, Li Cheng. Effect of porosity on compressive properties of porous sintered stainless steel fiber media[J]. Powder Metallurgy Technology, 2009, 27(5): 323-326.
    [9]Jiang Bin, Zhao Naiqin, Shi ChunSheng, Fu Donghui. Compressive behavior of aluminum foams with open cell and tailored porous morphology[J]. Powder Metallurgy Technology, 2006, 24(5): 364-368. DOI: 10.3321/j.issn:1001-3784.2006.05.010
    [10]Zuo Xiaoqing, Zhao Yong, Zhang Xiqiu, Lei Ting, Sun Jialin. On the fabricating and compressive property of aluminum foam[J]. Powder Metallurgy Technology, 2006, 24(3): 203-208. DOI: 10.3321/j.issn:1001-3784.2006.03.010
  • Cited by

    Periodical cited type(2)

    1. 王恒荣,姜凤阳,思芳,杜予晅,王俊勃,刘江南,刘建江. 烧结温度对SPS制备Ti_2AlNb组织与拉伸性能的影响. 稀有金属与硬质合金. 2024(03): 60-65 .
    2. 刘浩,石永亮,党海青. 挤出成形3D打印仿生骨植入钛合金支架制备工艺及性能研究. 粉末冶金技术. 2024(04): 367-373 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (539) PDF downloads (85) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return