Citation: | LI Yang, GUO Xu-qiang, XU Lei, LI Chang-yun, LIU Xiao-fei. Microstructure and refinement mechanism of Al–5Ti–1B alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090002 |
[1] |
马世光, 熊慧, 王祝堂. 回顾与展望全球铝产品产量及对晶粒细化剂的需求. 轻合金加工技术, 2011, 39(10): 1 DOI: 10.3969/j.issn.1007-7235.2011.10.001
Ma S G, Xiong H, Wang Z T. Review and outlook of output of aluminum product and grain refiner requirement in the world. Light Alloy Fab Technol, 2011, 39(10): 1 DOI: 10.3969/j.issn.1007-7235.2011.10.001
|
[2] |
闫敬明, 黎平, 左孝青, 等. Al–Ti–B晶粒细化剂研究进展: 细化机理及第二相控制. 材料导报, 2020, 34(5): 152
Yan J M, Li P, Zuo X Q, et al. Research progress of Al–Ti–B grain refiner: mechanism analysis and second phases controlling. Mater Rep, 2020, 34(5): 152
|
[3] |
钟海燕, 袁孚胜. Al–Ti–B中间合金生产方法及发展趋势. 有色金属材料与工程, 2016, 37(5): 243
Zhong H Y, Yuan F S. Production method and development trend of the Al–Ti–B master alloy. Nonferrous Met Mater Eng, 2016, 37(5): 243
|
[4] |
陈亚军, 许庆彦, 黄天佑. 铝合金晶粒细化剂研究进展. 材料导报, 2006, 20(12): 57 DOI: 10.3321/j.issn:1005-023X.2006.12.016
Chen Y J, Xu Q Y, Huang T Y. Development of research on grain refiners for aluminum alloys. Mater Rev, 2006, 20(12): 57 DOI: 10.3321/j.issn:1005-023X.2006.12.016
|
[5] |
李润霞, 张文华, 张鹏, 等. 电磁搅拌对Al–5Ti–B中间合金组织及细化效果的影响. 铸造, 2016, 65(1): 1 DOI: 10.3969/j.issn.1001-4977.2016.01.001
Li R X, Zhang W H, Zhang P, et al. Effect of electromagnetic stirring on the microstructure and refinement of Al–5Ti–B master alloy. Foundry, 2016, 65(1): 1 DOI: 10.3969/j.issn.1001-4977.2016.01.001
|
[6] |
王顺成, 郑开宏, 戚文军, 等. 电磁搅拌对Al–5Ti–1B的显微组织与晶粒细化能力的影响. 有色金属科学与工程, 2014, 5(1): 58
Wang S C, Zheng K H, Qi W J, et al. Effect of electromagnetic stirring on microstructure and grain refining efficiency of Al–5Ti–1B grain refiner. Nonferrous Met Sci Eng, 2014, 5(1): 58
|
[7] |
董天顺, 崔春翔, 刘双进, 等. Al–Ti–B细化剂的快速凝固及其细化机理研究. 稀有金属材料与工程, 2008, 37(1): 29 DOI: 10.3321/j.issn:1002-185X.2008.01.007
Dong T S, Cui C X, Liu S J, et al. Study on the rapid solidification and refining mechanism of Al–Ti–B refiner. Rare Met Mater Eng, 2008, 37(1): 29 DOI: 10.3321/j.issn:1002-185X.2008.01.007
|
[8] |
Ghadimi H, Hossein N S, Eghbali B. Enhanced grain refinement of cast aluminum alloy by thermal and mechanical treatment of Al–5Ti–B master alloy. Trans Nonferrous Met Soc China, 2013, 23: 1563 DOI: 10.1016/S1003-6326(13)62631-X
|
[9] |
王顺成, 康跃华, 周楠, 等. 粉末压制Al–5Ti–1B合金的显微组织与晶粒细化性能. 中国有色金属学报, 2019, 29(8): 1583 DOI: 10.1016/S1003-6326(19)65065-X
Wang S C, Kang Y H, Zhou N, et al. Microstructure and grain refining performance of Al–5Ti–1B alloy prepared by powder compaction. Chin J Nonferrous Met, 2019, 29(8): 1583 DOI: 10.1016/S1003-6326(19)65065-X
|
[10] |
刘艳, 尤齐燊, 朱红梅, 等. 电极感应气雾化法制备新型高硬度马氏体铁基合金粉末. 粉末冶金技术, 2021, 39(6): 537
Liu Y, You Q S, Zhu H M, et al. Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization. Powder Metall Technol, 2021, 39(6): 537
|
[11] |
黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004
|
[12] |
王承阳, 常洋, 张林海, 等. 氧化锆含量对钼合金组织和性能的影响. 粉末冶金技术, 2021, 39(5): 429
Wang C Y, Chang Y, Zhang L H, et al. Effect of ZrO2 content on microstructure and properties of molybdenum alloys. Powder Metall Technol, 2021, 39(5): 429
|
[13] |
吴明明, 李来平, 高选乔, 等. 粉末冶金技术制备钼基复合材料研究进展. 粉末冶金技术, 2021, 39(5): 462
Wu M M, Li L P, Gao X Q, et al. Research progress of molybdenum-based composites prepared by powder metallurgy technology. Powder Metall Technol, 2021, 39(5): 462
|
[14] |
高泽生. 铝合金晶粒细化剂的试验方法(2). 轻金属, 1999(4): 52
Gao Z S. Test method for grain refiners of aluminum alloys. Light Met, 1999(4): 52
|
[15] |
He S W, Liu Y, Guo S. Cooling rate calculation of non-equilibrium aluminum alloy powders prepared by gas atomization. Rare Met Mater Eng, 2009, 38(Suppl 1), 353
|
[16] |
中华人民共和国工业和信息化部. YST 447.1-2011铝及铝合金晶粒细化用合金线材, 第1部分: 铝–钛–硼合金线材. 北京: 中国标准出版社, 2011
Ministry of Industry and Information Technology, People’s Republic of China. YST 447.1-2011 Alloy Wires Used for the Grain Refiner for Aluminium and Aluminium Alloys — Part 1: Al–Ti–B Wires. Beijing: Standards Press of China, 2011
|
[17] |
戚文军, 王顺成, 陈学敏, 等. Al–5Ti–1B合金的有效形核相与晶粒细化机制. 稀有金属, 2013, 37(2): 179 DOI: 10.3969/j.issn.0258-7076.2013.02.002
Qi W J, Wang S C, Chen X M, et al. Effective nucleation phase and grain refinement mechanism of Al–5Ti–1B master alloy. Chin J Rare Met, 2013, 37(2): 179 DOI: 10.3969/j.issn.0258-7076.2013.02.002
|
[18] |
Fan Z, Wang Y, Zhang Y, et al. Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater, 2015, 84: 292 DOI: 10.1016/j.actamat.2014.10.055
|
[19] |
Limmaneevichitr C, Eidhed W. Fading mechanism of grain refinement of aluminum-silicon alloy with Al–Ti–B grain refiners. Mater Sci Eng, 2003, 349: 197 DOI: 10.1016/S0921-5093(02)00751-7
|
[20] |
薛希国, 谷吉存, 闫振武. 铝钛硼晶粒细化剂机理研究的进展及最新动向. 铝加工, 2004(1): 43 DOI: 10.3969/j.issn.1005-4898.2004.01.002
Xue X G, Gu J C, Yan Z W. Study progress and new trends for Al–Ti–B grain refining mechanism. Alum Fab, 2004(1): 43 DOI: 10.3969/j.issn.1005-4898.2004.01.002
|