AdvancedSearch
HU Jianbin, LIU Xiaojing, WANG Zhiyong, SHANG Feng, HE Yiqiang, YANG Jianming. Microstructure and properties of 316L/430 duplex stainless steels processed by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(4): 302-306. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090007
Citation: HU Jianbin, LIU Xiaojing, WANG Zhiyong, SHANG Feng, HE Yiqiang, YANG Jianming. Microstructure and properties of 316L/430 duplex stainless steels processed by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(4): 302-306. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090007

Microstructure and properties of 316L/430 duplex stainless steels processed by selective laser melting

More Information
  • Corresponding author:

    SHANG Feng, E-mail: shangfeng@jou.edu.cn

  • Received Date: October 21, 2021
  • Available Online: November 29, 2021
  • The 316L/430 duplex stainless steels were prepared by selective laser melting in this study, using 316L and 430 mixed powders prepared by gas atomization as the raw materials. The microstructure, mechanical properties, and corrosion resistance of the 316L/430 duplex stainless steels before and after solution treatment were examined by optical microscope, electronic material testing machine, and electrochemical workstation. The results indicate that, as the solution temperature is 1250 ℃, the 316L/430 duplex stainless steels specimens show the better comprehensive mechanical properties, the tensile strength, yield strength, elongation, and microhardness are 830 MPa, 340 MPa, 25%, and HV 356, respectively, and the area ratio of ferrite to austenite is 45.7:54.3. When the solution temperature is 1150 ℃, the specimens have the better corrosion resistance, the self-corrosion current density and pitting potential are 3.196×10‒6 A/cm2 and −0.118 V, respectively.

  • [1]
    Chail G, Kangas P. Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integr, 2016, 2: 1755 DOI: 10.1016/j.prostr.2016.06.221
    [2]
    Martín F, García C, Blanco Y, et al. Influence of sinter-cooling rate on the mechanical properties of powder metallurgy austenitic, ferritic, and duplex stainless steels sintered in vacuum. Mater Sci Eng A, 2015, 642: 360 DOI: 10.1016/j.msea.2015.06.097
    [3]
    Davidson K P, Singamneni S B. Magnetic characterization of selective laser-melted S32750 duplex stainless steel. JOM, 2017, 69(3): 569 DOI: 10.1007/s11837-016-2193-6
    [4]
    Davidson K P, Singamneni S B. Selective laser melting of duplex stainless steel powders: An investigation. Mater Manuf Processes, 2016, 31(12): 1543 DOI: 10.1080/10426914.2015.1090605
    [5]
    Davidson K P, Singamneni S B. Metallographic evaluation of duplex stainless steel powders processed by selective laser melting. Rapid Prototyp J, 2017, 23(6): 1146 DOI: 10.1108/RPJ-04-2016-0053
    [6]
    Hengsbach F, Koppa P, Duschik K, et al. Duplex stainless steel fabricated by selective laser melting-microstructural and mechanical properties. Mater Des, 2017, 133: 136 DOI: 10.1016/j.matdes.2017.07.046
    [7]
    Saeidi K, Kevetkova L, Lofaj F, et al. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility. Mater Sci Eng A, 2016, 665: 59 DOI: 10.1016/j.msea.2016.04.027
    [8]
    Shang F, Chen X Q, Zhang P, et al. Novel ferritic stainless steel with advanced mechanical properties and significant magnetic responses processed by selective laser melting. Mater Trans, 2019, 60(6): 1096 DOI: 10.2320/matertrans.M2018374
    [9]
    Shang F, Chen X Q, Wang Z Y, et al. The microstructure, mechanical properties, and corrosion resistance of UNS S32707 hyper-duplex stainless steel processed by selective laser melting. Metals, 2019, 9(9): 1012 DOI: 10.3390/met9091012
    [10]
    Sotomayor M E, Cervera A, Varez A, et al. Duplex stainless steel self-ligating orthodontic brackets by micro-powder injection moulding. Int J Eng Res, 2016, 2(4): 184
    [11]
    Sotomayor M E, Kloe R D, Levenfeld B, et al. Microstructural study of duplex stainless steels obtained by powder injection molding. J Alloys Compd, 2014, 589(4): 314
    [12]
    Shulga A V. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies. J Nucl Mater, 2013, 434(1-3): 133 DOI: 10.1016/j.jnucmat.2012.11.008
    [13]
    杨霆, 郑军妹, 刘晓刚, 等. 烧结温度对420不锈钢组织和性能的影响. 粉末冶金技术, 2016, 34(5): 373 DOI: 10.3969/j.issn.1001-3784.2016.05.010

    Yang T, Zheng J M, Liu X G, et al. Influence of sintering temperature on microstructure and properties of 420 stainless steel PM sintered body. Powder Metall Technol, 2016, 34(5): 373 DOI: 10.3969/j.issn.1001-3784.2016.05.010
    [14]
    张仁奇, 樊磊, 周宝刚, 等. 选区激光熔化316L不锈钢的各向组织与性能. 金属热处理, 2020, 45(9): 161 DOI: 10.13251/j.issn.0254-6051.2020.09.030

    Zhang R Q, Fan L, Zhou B G, et al. Microstructure and properties of selective laser melted 316L stainless steel in different directions. Heat Treat Met, 2020, 45(9): 161 DOI: 10.13251/j.issn.0254-6051.2020.09.030
    [15]
    Sotomayor M E, Levenfeld B, Varez A. Powder injection moulding of premixed ferritic and austenitic stainless steel powders. Mater Sci Eng A, 2011, 528(9): 3480 DOI: 10.1016/j.msea.2011.01.038
  • Related Articles

    [1]Effect of solution treatment on the microstructure and properties of UNS S32750 super duplex stainless steel prepared by selective laser melting[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024110001
    [2]XU Ying, ZHAO Sanyu, XIA Pengzhao, HE Yaoteng, WU Zeqian, CAI Yanqing. Effects of pore-forming agents on microstructure and properties of biomedical porous Ti/16Mg composites[J]. Powder Metallurgy Technology, 2024, 42(6): 621-631. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110005
    [3]LIANG Kai, LIU Zhongjun, JI Shuai, GAO Boyang. Research progress on mechanical properties of porous metal materials used for filtration[J]. Powder Metallurgy Technology, 2024, 42(1): 59-67. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090012
    [4]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [5]XI Sha, AN Geng, ZHANG Xiao, ZHOU Sha, LIU Renzhi, WU Jina. Corrosion resistance of FeCrAl coatings on Mo–La alloys[J]. Powder Metallurgy Technology, 2023, 41(1): 90-96. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010015
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]Microstructure and mechanical properties of the hybrid material fabricated by selective laser melting of 316L stainless steel on a 45# steel substrate[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100001
    [8]MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
    [9]ZHU Xue-chao, WEI Qing-song, SUN Chun-hua. Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment[J]. Powder Metallurgy Technology, 2019, 37(2): 83-90. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.001
    [10]Huang Jianzhong, Huang Boyun, Lu: Haibo. CHARACTERISTICS AND CORROSION RESISTANT PROPERTY OF HIGH TUNGSTEN HEAVY ALLOY SINTERED AT LOW TEMPERATURE[J]. Powder Metallurgy Technology, 1996, 14(1): 37-43.
  • Cited by

    Periodical cited type(1)

    1. 祁进坤,岳永文,胡剑,赵钢,寇晓磊,齐国强,王宏升,任淑彬. 淬火温度对S590粉末冶金高速钢组织和性能的影响. 粉末冶金技术. 2024(01): 75-83 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (452) PDF downloads (66) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return