AdvancedSearch
XU Jingru, ZHANG Weidong, YANG Peng, CHEN Fulin, WU Zhenggang, CAO Yuankui. Progress of titanium-based laminated materials by powder metallurgy[J]. Powder Metallurgy Technology, 2023, 41(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090022
Citation: XU Jingru, ZHANG Weidong, YANG Peng, CHEN Fulin, WU Zhenggang, CAO Yuankui. Progress of titanium-based laminated materials by powder metallurgy[J]. Powder Metallurgy Technology, 2023, 41(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090022

Progress of titanium-based laminated materials by powder metallurgy

More Information
  • Corresponding author:

    ZHANG Weidong, E-mail: weidongzhang@hnu.edu.cn (ZHANG W D)

    CAO Yuankui, caoyuankui@csu.edu.cn (CAO Y K)

  • Received Date: November 10, 2021
  • Accepted Date: November 10, 2021
  • Available Online: November 10, 2021
  • Based on the increasingly severe working environment, properties of titanium materials are facing the new challenges as the superior combination of strength and ductility. The design of laminated structure provides a new idea to achieve the remarkable strength-ductility enhancement of titanium-based materials. In recent years, titanium-based laminated materials have become the research hotspot. Titanium-based laminated materials obtained by different preparation techniques show excellent mechanical properties. Powder metallurgy technology has numerous advantages of simple and efficient process, by which the component control and the optimization of mechanical properties can be easily achieved. The main types and metallurgical processing of titanium-based laminated materials were described in this paper. The research progress of titanium-based laminated materials obtained by powder metallurgy was introduced, and strengthening and toughening mechanism of the high-performance titanium-based laminated structure materials was summarized. Finally, the basic research and practical application of the titanium-based laminated materials were prospected briefly.

  • [1]
    Olszta M J, Cheng X G, Jee S S, et al. Bone structure and formation: A new perspective. Mater Sci Eng R, 2007, 58(3-5): 77 DOI: 10.1016/j.mser.2007.05.001
    [2]
    Falini G, Albeck S, Weiner S, et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996, 271(5245): 67 DOI: 10.1126/science.271.5245.67
    [3]
    Kochmann W, Reibold M, Goldberg R, et al. Nanowires in ancient Damascus steel. J Alloys Compd, 2004, 372(1-2): L15 DOI: 10.1016/j.jallcom.2003.10.005
    [4]
    Sherby O D, Wadsworth J. Ancient blacksmiths, the Iron Age, Damascus steels, and modern metallurgy. J Mater Proc Technol, 2001, 117(3): 347 DOI: 10.1016/S0924-0136(01)00794-4
    [5]
    Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA, 2015, 112(47): 14501 DOI: 10.1073/pnas.1517193112
    [6]
    Yan L M, Yu J H, Zhong Y X, et al. Influence of scanning on nano crystalline β–Ti alloys fabricated by selective laser melting and their applications in biomedical science. J Nanosci Nanotechnol, 2020, 20(3): 1605 DOI: 10.1166/jnn.2020.17340
    [7]
    Oh J M, Chan H P, Yeom J T, et al. High strength and ductility in low-cost Ti–Al–Fe–Mn alloy exhibiting transformation-induced plasticity. Mater Sci Eng A, 2020, 772(20): 138813
    [8]
    刘强, 惠松骁, 宋生印, 等. 油气开发用钛合金油井管选材及工况适用性研究进展. 材料导报, 2019, 33(3): 115 DOI: 10.11896/cldb.201905017

    Liu Q, Hui S X, Song S Y, et al. Materials selection of titanium alloy OCTG used for oil and gas exploration and their applicability under service condition: a survey. Mater Rep, 2019, 33(3): 115 DOI: 10.11896/cldb.201905017
    [9]
    Hargrave B, Gonzalez M, Maskos K, et al. Titanium alloy tubing for HPHT OCTG applications // CORROSION 2010. San Antonio, 2010: 10318
    [10]
    江洪, 陈亚杨. 钛合金在舰船上的研究及应用进展. 新材料产业, 2018(12): 13 DOI: 10.19599/j.issn.1008-892x.2018.12.003

    Jiang H, Chen Y Y. Research and application progress of titanium alloys on ships. Adv Mater Ind, 2018(12): 13 DOI: 10.19599/j.issn.1008-892x.2018.12.003
    [11]
    王珂, 吴丽, 李永正, 等. 新型钛合金材料疲劳裂纹扩展试验研究. 舰船科学技术, 2020, 42(11): 9 DOI: 10.3404/j.issn.1672-7649.2020.11.002

    Wang K, Wu L, Li Y Z, et al. Experimental study on fatigue crack growth of new titanium alloy materials. Ship Sci Technol, 2020, 42(11): 9 DOI: 10.3404/j.issn.1672-7649.2020.11.002
    [12]
    武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.011

    Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.011
    [13]
    Wu X L, Zhu Y T. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett, 2017, 5(8): 527 DOI: 10.1080/21663831.2017.1343208
    [14]
    Zhang W D, Yang P, Cao Y K, et al. New Ti/β–Ti alloy laminated composite processed by powder metallurgy: Microstructural evolution and mechanical property. Mater Sci Eng A, 2021, 822: 141702 DOI: 10.1016/j.msea.2021.141702
    [15]
    Cao Y K, Zhang W D, Liu B, et al. Extraordinary tensile properties of titanium alloy with heterogeneous phase-distribution based on hetero-deformation induced hardening. Mater Res Lett, 2020, 8(7): 254 DOI: 10.1080/21663831.2020.1745919
    [16]
    Song Y, Yang R, Guo Z X. First principles estimation of bulk modulus and theoretical strength of titanium alloys. Mater Trans, 2002, 43(12): 3028 DOI: 10.2320/matertrans.43.3028
    [17]
    Kovacs P, Davidson J A. Chemical and electrochemical aspects of the biocompatibility of titanium and its alloys // Medical Applications of Titanium and Its Alloys: The Materials and Biological Issues. West Conshohocken, 1996: 163
    [18]
    Hall E O. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B, 1951, 64(9): 747 DOI: 10.1088/0370-1301/64/9/303
    [19]
    Petch N J. The cleavage strength of polycrystals. J Iron Steel Inst, 1953, 174: 25
    [20]
    Armstrong R, Codd I, Douthwaite R M, et al. The plastic deformation of polycrystalline aggregates. Phil Mag:J Theoret Exper Appl Phys, 1962, 7(73): 45
    [21]
    Qin L, Wang J, Wu Q, et al. In-situ observation of crack initiation and propagation in Ti/Al composite laminates during tensile test. J Alloys Compd, 2017, 712: 69 DOI: 10.1016/j.jallcom.2017.04.063
    [22]
    Hoseini-Athar M M, Tolaminejad B. Interface morphology and mechanical properties of Al–Cu–Al laminated composites fabricated by explosive welding and subsequent rolling process. Met Mater Int, 2016, 22(4): 670 DOI: 10.1007/s12540-016-5687-4
    [23]
    Karimi M, Toroghinejad M R. An alternative method for manufacturing high-strength CP Ti–SiC composites by accumulative roll bonding process. Mater Des, 2014, 59: 494 DOI: 10.1016/j.matdes.2014.03.040
    [24]
    Mo T, Chen J, Chen Z J, et al. Effect of intermetallic compounds (IMCs) on the interfacial bonding strength and mechanical properties of pre-rolling diffusion ARBed Al/Ti laminated composites. Mater Charact, 2020, 170: 110731 DOI: 10.1016/j.matchar.2020.110731
    [25]
    Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti–Al metal composite. Sci Rep, 2016, 6: 38461 DOI: 10.1038/srep38461
    [26]
    雷虎, 崔舜, 周增林, 等. Cu/Mo/Cu平面层状复合材料的研究进展. 粉末冶金技术, 2011, 29(3): 218 DOI: 10.19591/j.cnki.cn11-1974/tf.2011.03.014

    Lei H, Cui S, Zhou Z L, et al. Research and development of Cu/Mo/Cu laminated composite material. Powder Metall Technol, 2011, 29(3): 218 DOI: 10.19591/j.cnki.cn11-1974/tf.2011.03.014
    [27]
    李艳, 周增林, 惠志林, 等. 高界面结合强度铜/钼/铜叠层复合材料的制备研究. 粉末冶金技术, 2017, 35(1): 34 DOI: 10.3969/j.issn.1001-3784.2017.01.006

    Li Y, Zhou Z L, Hui Z L, et al. Preparation of Cu/Mo/Cu laminated composite material with high interfacial bonding strength. Powder Metall Technol, 2017, 35(1): 34 DOI: 10.3969/j.issn.1001-3784.2017.01.006
    [28]
    Xu S H, Du M, Li J, et al. Bio-mimic Ti–Ta composite with hierarchical “Brick-and-Mortar” microstructure. Materialia, 2019, 8: 100463 DOI: 10.1016/j.mtla.2019.100463
    [29]
    Ye N, Ren X P, Liang J H. Microstructure and mechanical properties of Ni/Ti/Al/Cu composite produced by accumulative roll bonding (ARB) at room temperature. J Mater Res Technol, 2020, 9(3): 5524 DOI: 10.1016/j.jmrt.2020.03.077
    [30]
    Ding H, Cui X P, Gao N N, et al. Fabrication of (TiB/Ti)–TiAl composites with a controlled laminated architecture and enhanced mechanical properties. J Mater Sci Technol, 2021, 62: 221 DOI: 10.1016/j.jmst.2020.06.011
    [31]
    Lei C X, Du Y, Zhu M, et al. Microstructure and mechanical properties of in situ TiC/Ti composites with a laminated structure synthesized by spark plasma sintering. Mater Sci Eng A, 2021, 812: 141136 DOI: 10.1016/j.msea.2021.141136
    [32]
    徐圣航, 周承商, 刘咏. 金属–金属层状结构复合材料研究进展. 中国有色金属学报, 2019, 29(6): 1125

    Xu S H, Zhou C S, Liu Y. Research progress of metal-metal laminated structure composites. Chin J Nonferrous Met, 2019, 29(6): 1125
    [33]
    Kang Y, Mao W M, Chen Y J, et al. Influence of Nb content on grain size and mechanical properties of 18wt% Cr ferritic stainless steel. Mater Sci Eng A, 2016, 677: 453 DOI: 10.1016/j.msea.2016.09.080
    [34]
    Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater, 2005, 53(18): 4817 DOI: 10.1016/j.actamat.2005.06.025
    [35]
    辛社伟, 周伟, 李倩, 等. 1500 MPa级新型超高强中韧钛合金. 中国材料进展, 2021, 40(6): 441 DOI: 10.7502/j.issn.1674-3962.202005029

    Xin D W, Zhou W, Li Q. A new type extra-high strength and medium toughness titanium alloy of Ti-1500. Mater China, 2021, 40(6): 441 DOI: 10.7502/j.issn.1674-3962.202005029
    [36]
    Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett, 2019, 7(10): 393 DOI: 10.1080/21663831.2019.1616331
    [37]
    Wu H, Geng L, Fan G H, et al. Nanoscale strain characterization of Ti3Al precipitate-reinforced Ti alloys. Mater Lett, 2017, 209: 182 DOI: 10.1016/j.matlet.2017.08.005
    [38]
    Guo T, Chen Y M, Cao R H, et al. Cleavage cracking of ductile-metal substrates induced by brittle coating fracture. Acta Mater, 2018, 152: 77 DOI: 10.1016/j.actamat.2018.04.017
    [39]
    Guo T, Qiao L J, Pang X L, et al. Brittle film-induced cracking of ductile substrates. Acta Mater, 2015, 99: 273 DOI: 10.1016/j.actamat.2015.07.059
    [40]
    Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study. Scr Mater, 2017, 135: 63 DOI: 10.1016/j.scriptamat.2017.03.030
    [41]
    Wu H, Fan G H, Huang M, et al. Fracture behavior and strain evolution of laminated composites. Compos Struct, 2017, 163: 123 DOI: 10.1016/j.compstruct.2016.12.036
    [42]
    Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog Mater Sci, 2017, 88: 467 DOI: 10.1016/j.pmatsci.2017.04.013
    [43]
    He Y I, Yan Y J, Qiao L J, et al. In situ transmission electron microscopy study of alpha-brass nanoligament formation, microstructure evolution and fracture. Scr Mater, 2011, 65(5): 444 DOI: 10.1016/j.scriptamat.2011.05.032
    [44]
    Wu H, Fan G H, Jin B C, et al. Enhanced fracture toughness of TiBw/Ti3Al composites with a layered reinforcement distribution. Mater Sci Eng A, 2016, 670: 233 DOI: 10.1016/j.msea.2016.06.026
    [45]
    Zhou X L, Chen C Q. Molecular dynamic simulations of the mechanical properties of crystalline/crystalline and crystalline/amorphous nanolayered pillars. Comput Mater Sci, 2015, 101: 194 DOI: 10.1016/j.commatsci.2015.01.033
    [46]
    Liu M C, Lee C J, Lai Y H, et al. Microscale deformation behavior of amorphous/nanocrystalline multilayered pillars. Thin Solid Films, 2010, 518(24): 7295 DOI: 10.1016/j.tsf.2010.04.096
    [47]
    Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science, 2011, 331(6024): 1587 DOI: 10.1126/science.1200177
  • Cited by

    Periodical cited type(3)

    1. 方传宝,吴士宾. 基于ANSYS的粉末精整压机主机结构设计与分析. 兰州文理学院学报(自然科学版). 2024(01): 66-71 .
    2. 于洋,徐圣航,廖俊. 粉末冶金工模具钢的生产技术及应用研究进展(上). 粉末冶金工业. 2024(01): 1-10+16 .
    3. 于洋,徐圣航,廖俊. 粉末冶金工模具钢的生产技术及应用研究进展(下). 粉末冶金工业. 2024(02): 1-10+20 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (752) PDF downloads (83) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return