Citation: | LIU Xinggang, LI Junpeng, MA Zhaojun, ZHANG Deliang. Microstructure and mechanical properties of solid-state recycled H11 steels after annealing[J]. Powder Metallurgy Technology, 2024, 42(6): 556-562. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120010 |
To solve the poor toughness problem of the solid-state recycled H11 steels prepared by pressing and extrusion forging using the turning chip powders in different particle size, the influence of the isothermal spherodizing annealing process on the microstructure and mechanical properties of the steels was studied, and the microstructure, phase composition, and mechanical properties of the steels were characterized. The optimum isothermal spheroidizing annealing process is as follows: the temperature is rised from room temperature to 880 ℃ at the rate of 10°/min, holding for 3 h, and furnace cooling to 750 ℃, holding for 4 h, and then furnace cooling to 550 ℃, air cooling. In the results, the microstructure of the experimental steels is composed of the spherical pearlite and the dispersed granular carbide. The plasticity is improved, the elongation increases from 3.4% to 12.8%, but the tensile strength and hardness decrease. The particle size of the turning chip powders affects the strength and toughness of the solid-state recycled H11 steels after the high temperature extrusion forging. The smaller the particle size is, the worse the strength and toughness are, because of the serious oxidation after the high temperature extrusion forging.
[1] |
Balasko T, Voncina M, Burja J, et al. High-temperature oxidation behaviour of AISI H11 tool steel. Metals, 2021, 11(5): 758 DOI: 10.3390/met11050758
|
[2] |
Katoch S, Singh V, Sehgal R. Mechanical properties and microstructure evaluation of differently cryogenically treated AISI-H11 steel. IntJ Steel Struct, 2019, 19: 1381 DOI: 10.1007/s13296-019-00216-4
|
[3] |
Chino Y, Kobata M, Shimojima K, et al. Blow forming of Mg alloy recycled by solid-state recycling. Mater Trans, 2004, 45(2): 361 DOI: 10.2320/matertrans.45.361
|
[4] |
陈梦婷, 石建军, 陈国平. 粉末冶金发展状况. 粉末冶金工业, 2017, 27(4): 66
Chen M T, Shi J J, Chen G P. Development status of powder metallurgy. Powder Metall Ind, 2017, 27(4): 66
|
[5] |
冯士超, 王艳红, 丁瑞锋. 粉末冶金在钢铁企业的应用及发展前景. 粉末冶金技术, 2015, 33(4): 296 DOI: 10.3969/j.issn.1001-3784.2015.04.011
Feng S C, Wang Y H, Ding R F. Application and development prospect of powder metallurgy in steel enterprises. Powder Metall Technol, 2015, 33(4): 296 DOI: 10.3969/j.issn.1001-3784.2015.04.011
|
[6] |
薛松, 周杰, 张艳伟, 等. H13钢退火态中的碳化物分析. 材料热处理学报, 2012, 33(2): 100
Xue S, Zhou J, Zhang Y W, et al. Carbide analysis in annealed state of H13 steel. J Mater Heat Treat, 2012, 33(2): 100
|
[7] |
张春华, 李春彦, 张松, 等. H13模具钢激光熔凝层的组织及性能. 金属热处理, 2004(10): 14 DOI: 10.3969/j.issn.0254-6051.2004.10.005
Zhang C H, Li C Y, Zhang S, et al. Structure and properties of laser molten layer of H13 mold steel. Met Heat Treat, 2004(10): 14 DOI: 10.3969/j.issn.0254-6051.2004.10.005
|
[8] |
刘兴刚, 王亚琴, 马召俊, 等. 挤压锻温度对固态再生H11钢组织和性能的影响. 东北大学学报(自然科学版), 2020, 41(10): 1394 DOI: 10.12068/j.issn.1005-3026.2020.10.005
Liu X G, Wang Y Q, Ma Z J, et al. Effect of extrusion-forging temperature on microstructure and mechanical properties of solid state regenerated H11 steel. J Northeastern Univ Nat Sci, 2020, 41(10): 1394 DOI: 10.12068/j.issn.1005-3026.2020.10.005
|
[9] |
万霄, 陈瑞航, 王颜, 等. 热处理工艺对H13热作模具钢组织与性能的影响. 宽厚板, 2020, 26(5): 18 DOI: 10.3969/j.issn.1009-7864.2020.05.005
Wan X, Chen R H, Wang Y, et al. Effects of heat treatment process on the microstructure and properties of H13 hot work die steel. Wide Heavy Plate, 2020, 26(5): 18 DOI: 10.3969/j.issn.1009-7864.2020.05.005
|
[10] |
Hajra R N, Rai A K, Tripathy H P, et al. Influence of tungsten on transformation characteristics in P92 ferritic-martensitic steel. J Alloys Compd, 2016, 689: 829 DOI: 10.1016/j.jallcom.2016.08.055
|
[11] |
Guo Z, Saunders N, Schille J P, et al. Material properties for process simulation. Mater Sci Eng A, 2009, 499(1-2): 7 DOI: 10.1016/j.msea.2007.09.097
|
[12] |
Saunders N, Guo Z, Li X, et al. Using JMatPro to model materials properties and behavior. JOM, 2003, 55: 60 DOI: 10.1007/s11837-003-0013-2
|
[13] |
Javaheri V, Nyyssönen T, Grande B, et al. Computational design of a novel medium-carbon, low-alloy steel microalloyed with niobium. J Mater Eng Perform, 2018, 27: 2978 DOI: 10.1007/s11665-018-3376-9
|
[14] |
Schille J P, Guo Z L, Saunder N, et al. Modeling phase transformations and material properties critical to processing simulation of steels. Mater Manuf Processes, 2011, 26(1): 137 DOI: 10.1080/10426910903153059
|
[15] |
Hu X B, Li L, Wu X C, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium. Int J Fatigue, 2006, 28(3): 175 DOI: 10.1016/j.ijfatigue.2005.06.042
|
[16] |
Podgornik B, Pus G, Zuzek B, et al. Heat treatment optimization and properties correlation for H11-type hot-work tool steel. Metall Mater Trans A, 2018, 49: 455 DOI: 10.1007/s11661-017-4430-1
|
[17] |
陈杰. 新冶炼工艺下H13型钢的热处理工艺及组织性能研究[学位论文]. 成都: 西华大学, 2020
Chen J. Research on Heat Treatment Process and Microstructure and Properties of H13 Steel Smelted by New Smelting Process [Dissertation]. Chengdu: Xihua University, 2020
|
[18] |
张文莉, 胡新, 石自友, 等. H13钢锻后热处理工艺对碳化物形态及分布的影响. 昆明冶金高等专科学校学报, 2015, 31(1): 62 DOI: 10.3969/j.issn.1009-0479.2015.01.012
Zhang W L, Hu X, Shi Z Y, et al. Effect of heat treatment after steel H13 forged on the morphology and distribution of carbide. J Kunming Metall Coll, 2015, 31(1): 62 DOI: 10.3969/j.issn.1009-0479.2015.01.012
|
[19] |
刘超, 高凯. 金属材料拉伸实验分析. 科技创新与应用, 2013(31): 43
Liu C, Gao K. Analysis of metallic material tensile experiment. Technol Innov Appl, 2013(31): 43
|
[20] |
王稳, 程晓农, 韦家波, 等. 等温球化退火温度对超细化H13钢组织与力学性能的影响. 金属热处理, 2019, 44(9): 161
Wang W, Cheng X N, Wei J B, et al. Effect of isothermal spheroidizing annealing temperature on microstructure and mechanical properties of ultra-fine H13 steel. Heat Treat Met, 2019, 44(9): 161
|
1. |
鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .
![]() |