AdvancedSearch
FENG Xiaowei, SI Anheng, FENG Bo, LI Daren. Fabrication, microstructure, and properties of W–Cu graded composites[J]. Powder Metallurgy Technology, 2024, 42(3): 283-289. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020002
Citation: FENG Xiaowei, SI Anheng, FENG Bo, LI Daren. Fabrication, microstructure, and properties of W–Cu graded composites[J]. Powder Metallurgy Technology, 2024, 42(3): 283-289. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020002

Fabrication, microstructure, and properties of W–Cu graded composites

More Information
  • Corresponding author:

    FENG Xiaowei, E-mail: fxwcsu@163.com

  • Received Date: May 04, 2022
  • Accepted Date: May 04, 2022
  • Available Online: May 04, 2022
  • The three-layer W–Cu graded composites were prepared by powders mixing and spark plasma sintering, using W and Cu powders in different proportions as the raw materials. The microstructure, interface characteristics, physical properties, mechanical properties, and thermal shock resistance of the W–Cu graded composites at different sintering temperatures were investigated. The results show that, the W–Cu graded composites sintered at 900 ℃ have the high relative density (95%) and retain the original design composition of single layer. The distribution of W and Cu in each graded layer is uniform, and the interface between W and Cu is well combined without diffusion. The mechanical properties of the W–Cu graded composites show the gradient distribution, and the microhardness of the W–40Cu layer is up to HV 136. The fracture is firstly present at the W–40Cu layer in the compression process, and the highest compressive yield strength is 378 MPa. The thermal conductivity of the W–Cu graded composite sintered at 900 ℃ is 202 W·m−1·K−1. After the thermal shock resistance test, the W–Cu gradient composites show the good thermal shock resistance performance without no crack at the interface.

  • [1]
    刘彬彬, 谢建新. W–Cu梯度功能材料的设计、制备与评价. 粉末冶金材料科学与工程, 2010, 15(5): 413

    Liu B B, Xie J X. Design, fabrication and evaluation of W–Cu functionally graded materials. Mater Sci Eng Powder Metall, 2010, 15(5): 413
    [2]
    汪峰涛. 新型钨铜复合材料的设计、制备与性能研究[学位论文]. 合肥: 合肥工业大学, 2009

    Wang F T. Design, Preparation and Properties of New Style Tungsten Copper Composites [Dissertation]. Hefei: Hefei University of Technology, 2009
    [3]
    卢尚智, 张春瑞, 高兵祥, 等. 微量Ni对W–Cu纳米复合材料制备及热性能影响研究. 粉末冶金工业, 2021, 31(3): 39

    Lu S Z, Zhang C R, Gao B X, et al. Effect of trace added Ni on sintering behaviors and physical properties of W–Cu nano-composite. Powder Metall Ind, 2021, 31(3): 39
    [4]
    齐艳飞, 王波, 周景一, 等. 复合电沉积制备W–Ni–Cu梯度材料的组织及性能. 稀有金属材料与工程, 2017, 46(12): 3893

    Qi Y F, Wang B, Zhou J Y, et al. Structure and property of W–Ni–Cu functionally graded materials by composite electrodeposition. Rare Met Mater Eng, 2017, 46(12): 3893
    [5]
    宋月鹏, 孙祥鸣, 李江涛, 等. W/Cu梯度材料热应力分析及结构优化设计. 稀有金属材料与工程, 2015, 44(3): 603

    Song Y P, Sun X M, Li J T, et al. Simulation of thermal stress and optimization design of structure for the tungsten/copper functional gradient material. Rare Met Mater Eng, 2015, 44(3): 603
    [6]
    徐仙, 陈鹏起, 台运霄, 等. 钨铜梯度材料热震过程中显微组织及热性能. 复合材料学报, 2021, 38(12): 4205

    Xu X, Chen P Q, Tai Y X, et al. Microstructure and thermal properties of W–Cu graded materials during thermal shock test. Acta Mater Compos Sin, 2021, 38(12): 4205
    [7]
    赵玉超, 唐建成, 叶楠, 等. 复合电镀制备WC@W–Cu复合材料的组织与性能. 稀有金属材料与工程, 2021, 50(4): 1384

    Zhao Y C, Tang J C, Ye N, et al. Microstructures and properties of WC@W–Cu composite prepared by composite electroplating. Rare Met Mater Eng, 2021, 50(4): 1384
    [8]
    林冰涛, 肖任勤, 赵帅, 等. 燃气舵用钨渗铜X射线探伤条纹显示分析. 粉末冶金技术, 2020, 38(6): 423

    Lin B T, Xiao R Q, Zhao S, et al. Analysis on X-ray flaw detection stripe of tungsten infiltrated copper used in gas rudder. Powder Metall Technol, 2020, 38(6): 423
    [9]
    Chaubey A K, Gupta R, Kumar R, et al. Fabrication and characterization of W–Cu functionally graded material by spark plasma sintering process. Fusion Eng Des, 2018, 135: 24 DOI: 10.1016/j.fusengdes.2018.07.010
    [10]
    Dong L L, Huo W T, Ahangarkani M, et al. Microstructural evaluation and mechanical properties of in-situ WC/W–Cu composites fabricated by RGO/W–Cu spark plasma sintering reaction. Mater Des, 2018, 160: 1196 DOI: 10.1016/j.matdes.2018.11.004
    [11]
    郭垚峰, 范景莲, 蒋冬福, 等. 细晶W–Cu复合FGM制备及其显微组织特征. 中南大学学报(自然科学版), 2014, 45(11): 3762

    Guo Y F, Fan J L, Jiang D F, et al. Fabrication and microstructure of fine grain W–Cu FGM. J Cent South Univ Sci Technol, 2014, 45(11): 3762
    [12]
    杨光, 李革民, 陈睿智, 等. 溶胶凝胶/氢还原工艺制备超细Cu–20W复合粉末及其烧结性能. 粉末冶金技术, DOI: 10.19591/j.cnki.cn11-1974/tf.2023050001

    Yang G, Li G M, Chen R Z, et al. Preparation of ultrafine Cu–20W composite powder by sol-gel with hydrogen reduction technology and its sintering behavior. Powder Metall Technol, DOI: 10.19591/j.cnki.cn11-1974/tf.2023050001
    [13]
    Liu J K, Wang K F, Chou K C, et al. Fabrication of ultrafine W–Cu composite powders and its sintering behavior. J Mater Res Technol, 2020, 9(2): 2154 DOI: 10.1016/j.jmrt.2019.12.046
    [14]
    Ma X X, Xiao B, Cao S H, et al. A novel approach to fabricate W/Cu functionally gradient materials. Int J Refract Met Hard Mater, 2018, 72: 183 DOI: 10.1016/j.ijrmhm.2017.11.021
    [15]
    Pillari L K, Bakshi S R, Chaudhuri P, et al. Fabrication of W–Cu functionally graded composites using high energy ball milling and spark plasma sintering for plasma facing components. Adv Powder Technol, 2020, 31(8): 3657 DOI: 10.1016/j.apt.2020.07.015
    [16]
    Tang X Q, Zhang H B, Du D N, et al. Fabrication of W–Cu functionally graded material by spark plasma sintering method. Int J Refract Met Hard Mater, 2014, 42: 193 DOI: 10.1016/j.ijrmhm.2013.09.005
    [17]
    舒果. 不同成分比钨铜复合材料致密化工艺的研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2008

    Shu G. Study on Densification Technology of W–Cu Composites in Different Ratio of Constituents [Dissertation]. Harbin: Harbin Institute of Technology, 2008
    [18]
    Yusefi A, Parvin N. Fabrication of three layered W–Cu functionally graded composite via spark plasma sintering. Fusion Eng Des, 2017, 114: 196 DOI: 10.1016/j.fusengdes.2016.11.013
    [19]
    Zhou K, Chen W G, Wang J J, et al. W–Cu composites reinforced by copper coated graphene prepared using infiltration sintering and spark plasma sintering: A comparative study. Int J Refract Met Hard Mater, 2019, 82: 91 DOI: 10.1016/j.ijrmhm.2019.03.026
    [20]
    Zhuo L C, Zhang J L, Zhang Q Q, et al. Achieving both high conductivity and reliable high strength for W–Cu composite alloys using spherical initial powders. Vacuum, 2020, 181: 109620 DOI: 10.1016/j.vacuum.2020.109620
    [21]
    蒋冬福, 范景莲, 刘涛, 等. 纳米复合W–Cu FGM的致密性及界面结合特征. 粉末冶金材料科学与工程, 2016, 21(2): 326

    Jiang D F, Fan J L, Liu T, et al. Densification and interface bonding characteristic of nano–composite W–Cu FGM. Mater Sci Eng Powder Metall, 2016, 21(2): 326

Catalog

    Article Metrics

    Article views (800) PDF downloads (98) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return