Citation: | XUE Jianrong, LIN Xiaohui, LI Yanchao, LIANG Jing, ZHANG Xin, GAO Xuanqiao, YANG Yichao, ZHANG Wen. Thermal deformation behavior and microstructure evolution of Mo–14Re alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2024, 42(3): 297-303. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030010 |
The constant strain rate compression experiment of powder metallurgy Mo–14Re alloys was carried out by Gleeble
[1] |
蒋丽娟, 李来平, 姚云芳, 等. 2014年钼业年评. 中国钼业, 2015, 39(1): 1
Jiang L J, Li L P, Yao Y F, et al. Annual review of molybdenum in 2014. China Molybd Ind, 2015, 39(1): 1
|
[2] |
王敏, 邓永山. 2015年全球钼市场评述. 中国钼业, 2016, 40(1): 55
Wang M, Deng Y S. Global molybdenum market in 2015. China Molybd Ind, 2016, 40(1): 55
|
[3] |
王家鹏, 张洪川, 王建国, 等. 全球钼资源供需形势分析及对策建议. 中国矿业, 2016, 25(增刊2): 1 DOI: 10.3969/j.issn.1004-4051.2016.z2.001
Wang J P, Zhang H C, Wang J G, et al. Analysis of global molybdenum resource supply and demand structure and some suggestions. China Min Mag, 2016, 25(Suppl 2): 1 DOI: 10.3969/j.issn.1004-4051.2016.z2.001
|
[4] |
李洪桂. 稀有金属冶金学. 北京: 冶金工业出版社, 1990
Li H G. Metallurgy of Rare Earth. Beijing: Metallurgical Industry Press, 1990
|
[5] |
杨松涛, 李继文, 魏世忠, 等. 纯钼板坯高温塑性变形行为及本构方程. 中国有色金属学报, 2011, 21(9): 2126
Yang S T, Li J W, Wei S Z, et al. Pyroplastic deformation behavior of pure molybdenum plate slab and constitutive equation. Chin J Nonferrous Met, 2011, 21(9): 2126
|
[6] |
Chaudhuri A, Sarkar A, Suwas S. Investigation of stress-strain response, microstructure and texture of hot deformed pure molybdenum. Int J Refract Met Hard Mater, 2018, 73: 168 DOI: 10.1016/j.ijrmhm.2018.02.011
|
[7] |
孙远, 王妍, 徐伟, 等. 再结晶态TZM合金热变形特征的研究. 稀有金属, 2010, 34(5): 689 DOI: 10.3969/j.issn.0258-7076.2010.05.012
Sun Y, Wang Y, Xu W, et al. Hot deformation behavior of recrystallized TZM alloy. Chin J Rare Met, 2010, 34(5): 689 DOI: 10.3969/j.issn.0258-7076.2010.05.012
|
[8] |
Hu P, Li H, Zuo Y G, et al. Investigation of microstructure and tensile properties of as-processed TZM alloy at elevated temperature. Mater Charact, 2021, 173(12): 110933
|
[9] |
Safari A, Imran M, Weiss S. A comparative study on modified johnson–cook and arrhenius-type constitutive models to predict the hot deformation behaviour of molybdenum-hafnium-carbide alloy. J Mater Eng Perform, 2021, 30: 1945 DOI: 10.1007/s11665-021-05464-2
|
[10] |
黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251
Huang H T, Wang W J, Zhong W Y, et al. Research progress on application of Mo–Re alloy in space nuclear power. At Energy Sci Technol, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251
|
[11] |
曾毅, 孙院军, 安耿, 等. 核反应堆用钼铼合金结构材料的研究进展. 粉末冶金技术, 2023, 41(4): 307
Zeng Y, Sun Y J, An G, et al. Research progress of Mo–Re alloy structural materials used for nuclear reactors. Powder Metall Technol, 2023, 41(4): 307
|
[12] |
Leichtfried G, Schneibel J H, Heilmaier M. Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys. Metall Mater Trans A, 2006, 37: 2955 DOI: 10.1007/s11661-006-0177-9
|
[13] |
Leonard K J, Busby J T, Zinkle S J. Microstructural and mechanical property changes with aging of Mo–41Re and Mo–47.5Re alloys. J Nucl Mater, 2007, 366(3): 369 DOI: 10.1016/j.jnucmat.2007.03.027
|
[14] |
薛建嵘, 林小辉, 李延超, 等. 热处理温度对Mo–14Re合金管材微观组织及力学性能的影响. 粉末冶金技术, 2023, 41(3): 263
Xue J R, Lin X H, Li Y C, et al. Effect of heat treatment temperature on microstructure and mechanical properties of Mo–14Re alloy tubes, Powder Metall Technol, 2023, 41(3): 263
|
[15] |
焦奔奇. WSTi3515S阻燃钛合金大晶粒超塑性及组织演变研究[学位论文]. 西安: 长安大学, 2017
Jiao B Q. Reach on Superplasticity and Microstructure Evolution with Large Grains of WSTi3515S Burn-Resistant Titanium Alloy [Dissertation]. Xi’an: Chang’an University, 2017
|
[16] |
Rao K P, Hawbolt E B. Development of constitutive relationships using compression testing of a medium carbon steel. J Eng Mater Technol, 1992, 114(1): 116 DOI: 10.1115/1.2904131
|
[17] |
Kreuss G. Deformation Processing and Structure. Ohio: American Society for Metal, 1984
|
[18] |
Zhao J W, Ding H, Zhao W J, et al. Modelling of the hot deformation behavior of a titanium alloy using constitutive equations and artificial neural network. Comput Mater Sci, 2014, 92: 47 DOI: 10.1016/j.commatsci.2014.05.040
|
[19] |
Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel. J Appl Phys, 1944, 15: 22 DOI: 10.1063/1.1707363
|
1. |
梁集标. 粉末冶金多台阶产品开发分析. 山西冶金. 2024(11): 89-91 .
![]() |