AdvancedSearch
XUE Jianrong, LIN Xiaohui, LI Yanchao, LIANG Jing, ZHANG Xin, GAO Xuanqiao, YANG Yichao, ZHANG Wen. Thermal deformation behavior and microstructure evolution of Mo–14Re alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2024, 42(3): 297-303. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030010
Citation: XUE Jianrong, LIN Xiaohui, LI Yanchao, LIANG Jing, ZHANG Xin, GAO Xuanqiao, YANG Yichao, ZHANG Wen. Thermal deformation behavior and microstructure evolution of Mo–14Re alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2024, 42(3): 297-303. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030010

Thermal deformation behavior and microstructure evolution of Mo–14Re alloys prepared by powder metallurgy

More Information
  • Corresponding author:

    ZHANG Wen, E-mail: gwenzh@163.com

  • Received Date: April 17, 2022
  • Accepted Date: April 17, 2022
  • Available Online: April 17, 2022
  • The constant strain rate compression experiment of powder metallurgy Mo–14Re alloys was carried out by Gleeble 1500 thermal simulation tester. The effects of deformation temperature (1100~1400 ℃) and strain rate (0.100~0.001 s−1) on the flow stress and microstructure evolution were analyzed. The constitutive equation of Mo–14Re alloys was established by hyperbolic sinusoidal Arrhenius model. The results show that, the flow stress of powder metallurgy Mo–14Re alloys decreases with the increase of deformation temperature or the decrease of strain rate during the thermal deformation, and the true stress-true strain curve shows the obvious work hardening and dynamic softening phenomenon. The dynamic softening behavior is mainly attributed to the dynamic recrystallization of Mo–14Re alloys at low strain rate (0.010 s−1 and 0.001 s−1) or high deformation temperature (>1200 ℃) during the thermal compression. The nucleation mode is grain boundary protruding nucleation. With the decrease of strain rate or the increase of temperature, the degree of recrystallization continues to increase, the grains continue to grow, and the Mo–14Re alloys are completely recrystallized at 1400 ℃ with the strain rate of 0.001 s−1.

  • [1]
    蒋丽娟, 李来平, 姚云芳, 等. 2014年钼业年评. 中国钼业, 2015, 39(1): 1

    Jiang L J, Li L P, Yao Y F, et al. Annual review of molybdenum in 2014. China Molybd Ind, 2015, 39(1): 1
    [2]
    王敏, 邓永山. 2015年全球钼市场评述. 中国钼业, 2016, 40(1): 55

    Wang M, Deng Y S. Global molybdenum market in 2015. China Molybd Ind, 2016, 40(1): 55
    [3]
    王家鹏, 张洪川, 王建国, 等. 全球钼资源供需形势分析及对策建议. 中国矿业, 2016, 25(增刊2): 1 DOI: 10.3969/j.issn.1004-4051.2016.z2.001

    Wang J P, Zhang H C, Wang J G, et al. Analysis of global molybdenum resource supply and demand structure and some suggestions. China Min Mag, 2016, 25(Suppl 2): 1 DOI: 10.3969/j.issn.1004-4051.2016.z2.001
    [4]
    李洪桂. 稀有金属冶金学. 北京: 冶金工业出版社, 1990

    Li H G. Metallurgy of Rare Earth. Beijing: Metallurgical Industry Press, 1990
    [5]
    杨松涛, 李继文, 魏世忠, 等. 纯钼板坯高温塑性变形行为及本构方程. 中国有色金属学报, 2011, 21(9): 2126

    Yang S T, Li J W, Wei S Z, et al. Pyroplastic deformation behavior of pure molybdenum plate slab and constitutive equation. Chin J Nonferrous Met, 2011, 21(9): 2126
    [6]
    Chaudhuri A, Sarkar A, Suwas S. Investigation of stress-strain response, microstructure and texture of hot deformed pure molybdenum. Int J Refract Met Hard Mater, 2018, 73: 168 DOI: 10.1016/j.ijrmhm.2018.02.011
    [7]
    孙远, 王妍, 徐伟, 等. 再结晶态TZM合金热变形特征的研究. 稀有金属, 2010, 34(5): 689 DOI: 10.3969/j.issn.0258-7076.2010.05.012

    Sun Y, Wang Y, Xu W, et al. Hot deformation behavior of recrystallized TZM alloy. Chin J Rare Met, 2010, 34(5): 689 DOI: 10.3969/j.issn.0258-7076.2010.05.012
    [8]
    Hu P, Li H, Zuo Y G, et al. Investigation of microstructure and tensile properties of as-processed TZM alloy at elevated temperature. Mater Charact, 2021, 173(12): 110933
    [9]
    Safari A, Imran M, Weiss S. A comparative study on modified johnson–cook and arrhenius-type constitutive models to predict the hot deformation behaviour of molybdenum-hafnium-carbide alloy. J Mater Eng Perform, 2021, 30: 1945 DOI: 10.1007/s11665-021-05464-2
    [10]
    黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251

    Huang H T, Wang W J, Zhong W Y, et al. Research progress on application of Mo–Re alloy in space nuclear power. At Energy Sci Technol, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251
    [11]
    曾毅, 孙院军, 安耿, 等. 核反应堆用钼铼合金结构材料的研究进展. 粉末冶金技术, 2023, 41(4): 307

    Zeng Y, Sun Y J, An G, et al. Research progress of Mo–Re alloy structural materials used for nuclear reactors. Powder Metall Technol, 2023, 41(4): 307
    [12]
    Leichtfried G, Schneibel J H, Heilmaier M. Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys. Metall Mater Trans A, 2006, 37: 2955 DOI: 10.1007/s11661-006-0177-9
    [13]
    Leonard K J, Busby J T, Zinkle S J. Microstructural and mechanical property changes with aging of Mo–41Re and Mo–47.5Re alloys. J Nucl Mater, 2007, 366(3): 369 DOI: 10.1016/j.jnucmat.2007.03.027
    [14]
    薛建嵘, 林小辉, 李延超, 等. 热处理温度对Mo–14Re合金管材微观组织及力学性能的影响. 粉末冶金技术, 2023, 41(3): 263

    Xue J R, Lin X H, Li Y C, et al. Effect of heat treatment temperature on microstructure and mechanical properties of Mo–14Re alloy tubes, Powder Metall Technol, 2023, 41(3): 263
    [15]
    焦奔奇. WSTi3515S阻燃钛合金大晶粒超塑性及组织演变研究[学位论文]. 西安: 长安大学, 2017

    Jiao B Q. Reach on Superplasticity and Microstructure Evolution with Large Grains of WSTi3515S Burn-Resistant Titanium Alloy [Dissertation]. Xi’an: Chang’an University, 2017
    [16]
    Rao K P, Hawbolt E B. Development of constitutive relationships using compression testing of a medium carbon steel. J Eng Mater Technol, 1992, 114(1): 116 DOI: 10.1115/1.2904131
    [17]
    Kreuss G. Deformation Processing and Structure. Ohio: American Society for Metal, 1984
    [18]
    Zhao J W, Ding H, Zhao W J, et al. Modelling of the hot deformation behavior of a titanium alloy using constitutive equations and artificial neural network. Comput Mater Sci, 2014, 92: 47 DOI: 10.1016/j.commatsci.2014.05.040
    [19]
    Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel. J Appl Phys, 1944, 15: 22 DOI: 10.1063/1.1707363
  • Cited by

    Periodical cited type(1)

    1. 梁集标. 粉末冶金多台阶产品开发分析. 山西冶金. 2024(11): 89-91 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (738) PDF downloads (120) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return