AdvancedSearch
Effects of extrusion ratio and extrusion temperature on the microstructure and mechanical properties of 6063 aluminum alloy prepared by hot extrusion consolidation of chips[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030011
Citation: Effects of extrusion ratio and extrusion temperature on the microstructure and mechanical properties of 6063 aluminum alloy prepared by hot extrusion consolidation of chips[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030011

Effects of extrusion ratio and extrusion temperature on the microstructure and mechanical properties of 6063 aluminum alloy prepared by hot extrusion consolidation of chips

More Information
  • Available Online: April 12, 2022
  • 6063 aluminum alloy samples were prepared by thermomechanical consolidation of alloy chips which involves hot extrusion of chip compacts with extrusion ratios of 9:1 and 25:1 and extrusion temperatures of 450 ℃ and 500 ℃, respectively, followed by a T6 heat treatment. The microstructure , tensile properties and fracture behavior of the samples were studied. The results show that with an extrusion temperature of 500 ℃, dynamic recrystallization occurs in the consolidated samples, and the recrystallized grains are confined within the chips and become elongated. With the increase of extrusion ratio, the grains become finer, the yield strength (YS) and ultimate tensile strength (UTS) increase from 198 and 242 MPa to 252 and 275 MPa, respectively, and the elongation to fracture decreases clearly from 19.5%-15.2%. With an extrusion ratio of 25:1, an decrease of the extrusion (EL) from 500 ℃ to 450 ℃ caused a slight increase of the average grain size, the YS and UTS remain almost unchanged, and the elongation to fracture decreases clearly from 15.2% to 12.1%. For comparison, 6063 aluminum alloy samples were also prepared by hot extrusion of ingots under the same conditions followed by the same T6 heat treatment. It was found that the average grain size changes little with the increase of extrusion ratio, but decreases slightly with the decrease of extrusion temperature. The tensile properties remain almost unchanged in these two cases (YS: 192-202 MPa, UTS: 228-237 MPa, EL: 18.4-19.1%). Both types of materials exhibit ductile tensile fracture, but the mode of fracture is different, with the material prepared by consolidation of chips shows interchip decohesion. Correlations among processing conditions, microstructure and mechanical properties are discussed.
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
    [6]LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(3)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
    3. 刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (264) PDF downloads (25) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return