AdvancedSearch
Effects of extrusion ratio and extrusion temperature on the microstructure and mechanical properties of 6063 aluminum alloy prepared by hot extrusion consolidation of chips[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030011
Citation: Effects of extrusion ratio and extrusion temperature on the microstructure and mechanical properties of 6063 aluminum alloy prepared by hot extrusion consolidation of chips[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030011

Effects of extrusion ratio and extrusion temperature on the microstructure and mechanical properties of 6063 aluminum alloy prepared by hot extrusion consolidation of chips

More Information
  • Available Online: April 12, 2022
  • 6063 aluminum alloy samples were prepared by thermomechanical consolidation of alloy chips which involves hot extrusion of chip compacts with extrusion ratios of 9:1 and 25:1 and extrusion temperatures of 450 ℃ and 500 ℃, respectively, followed by a T6 heat treatment. The microstructure , tensile properties and fracture behavior of the samples were studied. The results show that with an extrusion temperature of 500 ℃, dynamic recrystallization occurs in the consolidated samples, and the recrystallized grains are confined within the chips and become elongated. With the increase of extrusion ratio, the grains become finer, the yield strength (YS) and ultimate tensile strength (UTS) increase from 198 and 242 MPa to 252 and 275 MPa, respectively, and the elongation to fracture decreases clearly from 19.5%-15.2%. With an extrusion ratio of 25:1, an decrease of the extrusion (EL) from 500 ℃ to 450 ℃ caused a slight increase of the average grain size, the YS and UTS remain almost unchanged, and the elongation to fracture decreases clearly from 15.2% to 12.1%. For comparison, 6063 aluminum alloy samples were also prepared by hot extrusion of ingots under the same conditions followed by the same T6 heat treatment. It was found that the average grain size changes little with the increase of extrusion ratio, but decreases slightly with the decrease of extrusion temperature. The tensile properties remain almost unchanged in these two cases (YS: 192-202 MPa, UTS: 228-237 MPa, EL: 18.4-19.1%). Both types of materials exhibit ductile tensile fracture, but the mode of fracture is different, with the material prepared by consolidation of chips shows interchip decohesion. Correlations among processing conditions, microstructure and mechanical properties are discussed.
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return