Citation: | WANG Xianhe, XIE Xingcheng, YANG Jian, LIN Zhongkun, SHI Zhiguang, LIU Hao, CAO Ruijun. Research progress and applications on TiB2 ceramic[J]. Powder Metallurgy Technology, 2024, 42(4): 427-436. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050005 |
With high melting point, high hardness, high thermal conductivity, excellent electrical conductivity, and high temperature oxidation resistance, the TiB2 ceramic has been applied in the fields of aerospace, machinery manufacturing, metal smelting, electronic information, and so on. However, the high-end manufacturing application of TiB2 ceramic has been limited by the low relative density and the difficulty of machine-processing. The densification of TiB2 ceramic could be improved by doping modification, adding sintering additives, optimizing sintering process, and so on, which significantly improves the mechanical properties. The research progress of high-performance TiB2 ceramic in terms of composition design and sintering processing was reviewed in this paper. The applications of TiB2 ceramic were also prospected on precision tools, bulletproof armor, and cathode tools.
[1] |
邹建平, 沈明. TiB2基陶瓷复合材料研究进展. 陶瓷科学与艺术, 2008, 42(11): 7 DOI: 10.3969/j.issn.1671-7643.2008.11.004
Zou J P, Shen M. The research progress of TiB2 based composites. Ceram Sci Art, 2008, 42(11): 7 DOI: 10.3969/j.issn.1671-7643.2008.11.004
|
[2] |
崔正浩, 李宗家, 程焕武, 等. 二硼化钛陶瓷研究进展及展望. 陶瓷, 2021(9): 12 DOI: 10.3969/j.issn.1002-2872.2021.09.002
Cui Z H, Li Z J, Cheng H W, et al. Research progress and prospect of titanium diboride ceramics. Ceramics, 2021(9): 12 DOI: 10.3969/j.issn.1002-2872.2021.09.002
|
[3] |
范晓文, 王国珍, 卢凤祥. TiB2基切削刀具的制备和摩擦学性能研究. 金刚石与磨料磨具工程, 2019, 39(6): 62
Fan X W, Wang G Z, Lu F X. Study on fabrication and tribological properties of TiB2-based cutting tools. Diamond Abras Eng, 2019, 39(6): 62
|
[4] |
黄小晓, 涂赣峰, 王术新, 等. TiB2涂层的制备及其应用研究进展. 稀有金属材料与工程, 2022, 51(3): 1087 DOI: 10.12442/j.issn.1002-185X.20210141
Huang X X, Tu G F, Wang S X, et al. Research progress in preparation and application of TiB2 coating. Rare Met Mater Eng, 2022, 51(3): 1087 DOI: 10.12442/j.issn.1002-185X.20210141
|
[5] |
刘国玺, 李克智, 张丛. TiB2基复相陶瓷研究进展. 材料导报, 2015, 29(19): 89
Liu G X, Li K Z, Zhang C. Research progress on titanium diboride based ceramic composites. Mater Rev, 2015, 29(19): 89
|
[6] |
Tan D W, Guo W M, Wang H J, et al. Cutting performance and wear mechanism of TiB2−B4C ceramic cutting tools in high speed turning of Ti6Al4V alloy. Ceram Int, 2018, 44(13): 15495 DOI: 10.1016/j.ceramint.2018.05.209
|
[7] |
Zhao G L, Huang C Z, He N, et al. Microstructure and mechanical properties at room and elevated temperatures of reactively hot pressed TiB2−TiC−SiC composite ceramic tool materials. Ceram Int, 2016, 42(4): 5353 DOI: 10.1016/j.ceramint.2015.12.068
|
[8] |
韩保红, 程兆刚, 韩思辰, 等. TiB2基陶瓷/Ti−6Al−4V合金梯度纳米复合材料组织演化与防弹性能. 稀有金属材料与工程, 2018, 47(S1): 123
Han B H, Cheng Z G, Han S C, et al. Microstructure evolution and ballistic performance of the laminated composites of TiB2-based cermic and Ti−6Al−4V alloy with nano-structured gradient. Rare Met Mater Eng, 2018, 47(S1): 123
|
[9] |
Murray J L, Liao P K, Spear K E. The B−Ti (boron−titanium) system. Bull Alloy Phase Diagram, 1986, 7: 550 DOI: 10.1007/BF02869864
|
[10] |
Jeitschko W, Pottgen R, Hoffman R D. Structural Chemistry of Hard Materials. New York: Handbook of Ceramic Hard Materials, 2003
|
[11] |
Song J P, Xie J C, Lü M, et al. Microstructure and mechanical properties of TiB2-HfC ceramic tool materials. JOM, 2018, 70: 2544 DOI: 10.1007/s11837-018-3128-1
|
[12] |
Balcı Ö, Burkhardt U, Schmidt M, et al. Densification, microstructure and properties of TiB2 ceramics fabricated by spark plasma sintering. Mater Charact, 2018, 145: 435 DOI: 10.1016/j.matchar.2018.09.010
|
[13] |
Failla S, Fu S, Sciti D, et al. Flash spark plasma sintering of pure TiB2. Open Ceram, 2021, 5: 100075 DOI: 10.1016/j.oceram.2021.100075
|
[14] |
汪建利, 邓启超. 燃烧合成制备Cf/TiC−TiB2复相陶瓷的可行性分析. 黄山学院学报, 2008, 10(3): 38 DOI: 10.3969/j.issn.1672-447X.2008.03.012
Wang J L, Deng Q C. Feasibility analysis about Cf/TiC−TiB2 multiphase ceramics prepared by combustion synthesis. J Huangshan Univ, 2008, 10(3): 38 DOI: 10.3969/j.issn.1672-447X.2008.03.012
|
[15] |
王业亮, 傅正义, 王皓, 等. TiB2−TiC复相陶瓷的结构与性能研究. 复合材料学报, 2003, 20(1): 22 DOI: 10.3321/j.issn:1000-3851.2003.01.005
Wang Y L, Fu Z Y, Wang H, et al. Study on the structure and properties of TiB2−TiC multiphase ceramics. Acta Mater Compos Sin, 2003, 20(1): 22 DOI: 10.3321/j.issn:1000-3851.2003.01.005
|
[16] |
张宇, 郭英奎, 张馨予, 等. 粉体合成工艺对TiB2−TiC复相陶瓷的微观组织与力学性能的影响. 硅酸盐学报, 2017, 45(12): 1788
Zhang Y, Guo Y K, Zhang X Y, et al. Effect of powder synthesis progressing on microstructure and mechanical properties of TiB2−TiC composite ceramics. J Chin Ceram Soc, 2017, 45(12): 1788
|
[17] |
王松杰. TiB2−TiC和TiB2−TiN复合材料无压烧结工艺研究[学位论文]. 黑龙江: 哈尔滨工业大学, 2014
Wang S J. Study on Pressureless Sintering Processes of TiB2−TiC and TiB2−TiN Composites [Dissertation]. Heilongjiang: Harbin Institute of Technology, 2014
|
[18] |
Shayesteh F, Delbari S A, Ahmadi Z, et al. Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma. Ceram Int, 2019, 45(5): 5306 DOI: 10.1016/j.ceramint.2018.11.228
|
[19] |
Liu M M, Hu M H, Wang Y Y, et al. Synthesis and mechanism of TiB2–TiN ceramic composites by high-pressure method. Ceram Int, 2021, 47(10): 14146 DOI: 10.1016/j.ceramint.2021.02.001
|
[20] |
Kovalčíková A, Tatarko P, Sedlák R, et al. Mechanical and tribological properties of TiB2−SiC and TiB2−SiC−GNPs ceramic composites. J Eur Ceram Soci, 2020, 40(14): 4860 DOI: 10.1016/j.jeurceramsoc.2020.04.045
|
[21] |
Nguyen V H, Delbari S A, Ahmadi Z, et al. Effects of discrete and simultaneous addition of SiC and Si3N4 on microstructural development of TiB2 ceramics. Ceram Int, 2021, 47(3): 3520 DOI: 10.1016/j.ceramint.2020.09.196
|
[22] |
Nguyen V H, Asl M S, Mahaseni Z H, et al. Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method. Ceram Int, 2020, 46(16): 25341 DOI: 10.1016/j.ceramint.2020.07.001
|
[23] |
刘明明, 胡美华, 毕宁, 等. TiB2−B4C陶瓷复合材料高压烧结与性能表征. 硅酸盐通报, 2020, 39(3): 910
Liu M M, Hu M H, Bi N, et al. High-pressure sintering and performance characterization of TiB2−B4C ceramic composites. Bull Chin Ceram Soc, 2020, 39(3): 910
|
[24] |
Chen D M, Zhang K B, Zeng J J, et al. Microstructure and mechanical properties of TiB2−B4C ceramics fabricated by hot-pressing. Ceram Int, 2021, 47(18): 25895 DOI: 10.1016/j.ceramint.2021.05.320
|
[25] |
Hoke D A, Meyers M A. Consolidation of combustion-synthesis titanium diboride-based materials. J Am Ceram Soc, 1995, 78(2): 275 DOI: 10.1111/j.1151-2916.1995.tb08797.x
|
[26] |
祝弘滨, 章潇慧, 刘佰博, 等. TiB2−M金属陶瓷材料及其涂层制备技术研究进展. 新材料产业, 2017(2): 46 DOI: 10.3969/j.issn.1008-892X.2017.02.011
Zhu H B, Zhang X H, Liu B B, et al. Research progress of TiB2−M cermet materials and their coating preparation technology. Adv Mater Ind, 2017(2): 46 DOI: 10.3969/j.issn.1008-892X.2017.02.011
|
[27] |
Qi L Q, Han T Y, Zhang Y J. Electrostatic precipitability of TiB2−Fe−Mo−Co ceramic-metal composites. J Alloys Compd, 2019, 778: 507 DOI: 10.1016/j.jallcom.2018.11.217
|
[28] |
Yang Y, Yin B B, Shang Y S, et al. Preparation and characterization of novel TiB2−12(Fe−Co−Cr−Ni) cermets and their corrosion resistance in molten aluminum. Corros Sci, 2021, 190: 109643 DOI: 10.1016/j.corsci.2021.109643
|
[29] |
Wu N, Xue F D, Wang J Y, et al. Effect of TiN addition on the microstructure and mechanical properties of TiB2−FeNi based cermets. Mater Sci Eng A, 2019, 743: 546 DOI: 10.1016/j.msea.2018.11.067
|
[30] |
姚元鹏. SPS制备以非晶态粉末为烧结助剂的TiB2基陶瓷复合材料[学位论文]. 广东: 华南理工大学, 2016
Yao Y P. TiB2-Based Ceramic Composites Fabricated Using Glassy Powder as Sintering Sid by SPS [Dissertation]. Guangdong: South China University of Technology, 2016
|
[31] |
Li Y L, Xu H Y, Ke B, et al. TEM characterization of a supra-nano-dual-phase binder phase in spark plasma sintered TiB2-5wt%HEAs cermet. Ceram Int, 2019, 45(7): 9401 DOI: 10.1016/j.ceramint.2018.08.174
|
[32] |
黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004
|
[33] |
Liu B Q, Wei W Q, Gan Y Q, et al. Preparation, mechanical properties and microstructure of TiB2 based ceramic cutting tool material toughened by TiC whisker. Int J Refract Met Hard Mater, 2020, 93: 105372 DOI: 10.1016/j.ijrmhm.2020.105372
|
[34] |
张宇. TiB2−TiC复相陶瓷的烧结工艺研究[学位论文]. 黑龙江: 哈尔滨理工大学, 2017
Zhang Y. Study on Sintering Processing of TiB2−TiC Composite Ceramics [Dissertation]. Heilongjiang: Harbin University of Science and Technology, 2017
|
[35] |
Ghafuri F, Ahmadian M, Emadi R, et al. Effects of SPS parameters on the densification and mechanical properties of TiB2−SiC composite. Ceram Int, 2019, 45(8): 10550 DOI: 10.1016/j.ceramint.2019.02.119
|
[36] |
Khajehzadeh M, Ehsani N, Baharvandi H R, et al. Thermodynamical evaluation, microstructural characterization and mechanical properties of B4C−TiB2 nanocomposite produced by in-situ reaction of nano-TiO2. Ceram Int, 2020, 46(17): 26970 DOI: 10.1016/j.ceramint.2020.07.174
|
[37] |
张禹, 陈铭延, 陈宇凡, 等. 渗Ti法制备TiB2−TiC复合材料的研究. 材料与冶金学报, 2019, 18(3): 196
Zhang Y, Chen M Y, Chen Y F, et al. Study of the fabrication of TiB2−TiC composites by titanium infiltration. J Mater Metall, 2019, 18(3): 196
|
[38] |
Foong L K, Xu C Y. Hot pressing and microstructural characterization of SiC and TiN added TiB2 ceramics. Ceram Int, 2021, 47(3): 3946 DOI: 10.1016/j.ceramint.2020.09.258
|
[39] |
Li W, Wei M G, Yao G L, et al. Hot-pressed TiB2 ceramics with B4C and C additives. Key Eng Mater, 2010, 434: 182
|
[40] |
Mahaseni Z H, Germi M D, Ahmadi Z, et al. Microstructural investigation of spark plasma sintered TiB2 ceramics with Si3N4 addition. Ceram Int, 2018, 44(11): 13367 DOI: 10.1016/j.ceramint.2018.04.171
|
[41] |
Zhang Z X, Xu C J, Du X W, et al. Synthesis mechanism and mechanical properties of TiB2–SiC composites fabricated with the B4C–TiC–Si system by reactive hot pressing. J Alloys Compd, 2015, 619: 26 DOI: 10.1016/j.jallcom.2014.09.030
|
[42] |
Yang Z L, Ouyang J H, Liu Z G. Isothermal oxidation behavior of reactive hot-pressed TiN–TiB2 ceramics at elevated temperatures. Mater Des, 2011, 32(1): 29 DOI: 10.1016/j.matdes.2010.06.041
|
[43] |
Zhao H, Cheng Y B. Formation of TiB2–TiC composites by reactive sintering. Ceram Int, 1999, 25(4): 353 DOI: 10.1016/S0272-8842(98)00048-0
|
[44] |
宁广庆, 卢新发, 安志明. 真空热压烧结刀具的制备与性能研究. 铸造技术, 2018, 39(11): 2580
Ning G Q, Lu X F, An Z M. Preparation and properties of vacuum hot-pressing sintering tools. Foundry Technol, 2018, 39(11): 2580
|
[45] |
谭大旺, 郭伟明, 吴利翔, 等. TiB2−B4C陶瓷刀具切削Inconel718合金的切削性能与磨损机制. 机械工程材料, 2018, 42(8): 57 DOI: 10.11973/jxgccl201808012
Tan D W, Guo W M, Wu L X, et al. Cutting performance and wear mechanism of TiB2−B4C ceramic cutting tool in cutting Inconel 718 alloy. Mater Mech Eng, 2018, 42(8): 57 DOI: 10.11973/jxgccl201808012
|
[46] |
李悦, 贾斌, 李文. 国产化楔形焊接劈刀的考核验证方法. 电子工艺技术, 2022, 43(1): 11
Li Y, Jia B, Li W. Assessment and verification method for domestic bonding wedges. Electron Process Technol, 2022, 43(1): 11
|
[47] |
文泽海, 卢茜, 伍艺龙, 等. 引线键合楔形劈刀及劈刀老化现象研究. 电子工艺技术, 2019, 40(1): 8
Wen Z H, Lu Q, Wu Y L, et al. Research of bonding wedge and its degradation phenomenon. Electron Process Technol, 2019, 40(1): 8
|
[48] |
Beiss P, Ruthardt R, Warlimont H. Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Heidelberg: Springer, 2002
|
[49] |
国家计量科学数据中心. 常用介质及材料声速数据[DB/OL]. 国家科技资源共享服务平台[2024-07-21]. https://srd.nmdc.ac.cn/srd/srd/acoustic
National Metrology Data Center. Sound velocity data of commonly used media and materials [DB/OL]. National Science & Technology Infrastructure [2024-07-21]. https://srd.nmdc.ac.cn/srd/srd/acoustic
|
[50] |
Pierson H O. 6-Carbides of group VI: Chromium, molybdenum, and tungsten carbides. Handbook of Refractory Carbides and Nitrides. Oxford: William Andrew Publishing, 1996
|
[51] |
徐怡, 李日升, 苏继楷, 等. 二硼化钛(TiB2)的性能及其应用. 中华手工, 1998(5): 40
Xu Y, Li R S, Su J K, et al. Properties of titanium diboride (TiB2) and its applications. Chin Handicraft, 1998(5): 40
|
[52] |
Waśkowska A, Gerward L, Olsen J S, et al. Thermoelastic properties of ScB2, TiB2, YB4 and HoB4: Experimental and theoretical studies. Acta Mater, 2011, 59(12): 4886 DOI: 10.1016/j.actamat.2011.04.030
|
[53] |
黎军军, 赵学坪, 陶强, 等. 二硼化钛的高温高压制备及其物性. 物理学报, 2013, 62(2): 026202 DOI: 10.7498/aps.62.026202
Li J J, Zhao X P, Tao Q, et al. Characterization of TiB2 synthesized at high pressure and high temperature. Acta Phys Sin, 2013, 62(2): 026202 DOI: 10.7498/aps.62.026202
|
[54] |
殷姝雅, 李松, 李家华, 等. 二硼化钛防弹陶瓷的作用机理与烧结工艺进展. 中国陶瓷工业, 2021, 28(5): 6
Yin S Y, Li S, Li J H, et al. Mechanism of action and sintering process progress of titanium diboride bulletproof ceramics. China Ceram Ind, 2021, 28(5): 6
|
[55] |
赵忠民, 彭文斌. 硼化钛基陶瓷/钛合金梯度纳米结构复合材料组织演化、损伤失效与抗弹性能研究. 现代技术陶瓷, 2016, 37(6): 412
Zhao Z M, Peng W B. Microstructure evolution, structural damage, failure mechanisms and ballistic performance of nano-structured graded composite with TiB2-based ceramic and Ti-based alloy. Adv Ceram, 2016, 37(6): 412
|
[56] |
王有维, 谢刚, 于站良, 等. 铝电解用新型等离子喷涂制备TiB2基惰性阴极的研究进展. 热加工工艺, 2014, 43(14): 32
Wang Y W, Xie G, Yu Z L, et al. Research status of TiB2 based inert cathode prepared by plasma spraying. Hot Working Technol, 2014, 43(14): 32
|
[57] |
董艳玲, 王为民. TiB2-BN复相导电陶瓷的研究进展. 硅酸盐通报, 2004(4): 55 DOI: 10.3969/j.issn.1001-1625.2004.04.015
Dong Y L, Wang W M. Research progress of TiB2−BN compound conductible ceramics. Bull Chin Ceram Soc, 2004(4): 55 DOI: 10.3969/j.issn.1001-1625.2004.04.015
|
[58] |
Herrmann M, Räthel J, Höhn S, et al. Interaction of titanium diboride/boron nitride evaporation boats with aluminium. J Eur Ceram Soc, 2011, 31(13): 2401 DOI: 10.1016/j.jeurceramsoc.2011.04.035
|
1. |
王楚晗,齐超琪. 颗粒增强铝基复合材料激光增材制造研究现状. 自动化与信息工程. 2024(06): 12-19+35 .
![]() |