Citation: | LI Yiyang, ZHANG Ruijie, ZHANG Cong, JIANG Xue, WANG Yongwei, LIU Geng, SU Jie. Research progress on oxide formation and control of high-performance steels by additive manufacturing[J]. Powder Metallurgy Technology, 2024, 42(3): 264-274, 296. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060008 |
The research progress of oxides in the high performance steels by additive manufacturing was reviewed in this paper, including the characteristics and formation of oxides, the influence of oxides on the molten pool, the mechanism of oxide destruction and reconstruction, and the movement of oxides in the molten pool. In addition, the design idea for the oxide harmlessness was also described to provide the reference for the research of the oxide harmlessness during the metal additive manufacturing process in the future.
[1] |
王晓璐. 拓扑优化设计及嵌入式技术在3D打印中的应用. 粉末冶金技术, 2023, 41(3): 241
Wang X L. Application of topology optimization design and embedded technology in 3D printing. Powder Metall Technol, 2023, 41(3): 241
|
[2] |
顾东东, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造. 中国激光, 2020, 47(5): 0500002 DOI: 10.3788/CJL202047.0500002
Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components. China J Laser, 2020, 47(5): 0500002 DOI: 10.3788/CJL202047.0500002
|
[3] |
马青原, 杜沛南, 彭英博, 等. 金属增材制造技术在核工业领域的应用与发展. 粉末冶金技术, 2022, 40(1): 86
Ma Q Y, Du P N, Peng Y B, et al. Application and development of metal additive manufacturing technology in the field of nuclear industry. Powder Metall Technol, 2022, 40(1): 86
|
[4] |
Sun Y, Hebert R J, Aindow M. Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting. Mater Des, 2018, 140: 153 DOI: 10.1016/j.matdes.2017.11.063
|
[5] |
Eo D R, Park S H, Cho J W. Controlling inclusion evolution behavior by adjusting flow rate of shielding gas during direct energy deposition of AISI 316 L. Addit Manuf, 2020, 33: 101119
|
[6] |
Zhou X, Liu X H, Zhang D D, et al. Balling phenomena in selective laser melted tungsten. J Mater Process Technol, 2015, 222: 33 DOI: 10.1016/j.jmatprotec.2015.02.032
|
[7] |
Zhong Y, Liu L F, Zou J, et al. Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting. J Mater Sci Technol, 2020, 42(7): 97
|
[8] |
Kies F, Wilms M B, Pirch N, et al. Defect formation and prevention in directed energy deposition of high-manganese steels and the effect on mechanical properties. Mater Sci Eng A, 2020, 772: 138688 DOI: 10.1016/j.msea.2019.138688
|
[9] |
Zhong Y, Liu L, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater, 2016, 470: 170 DOI: 10.1016/j.jnucmat.2015.12.034
|
[10] |
Saeidi K, Kvetkova L, Lofaj F, et al. Austenitic stainless steel strengthened by the in situ formation of oxide nanoinclusions. RSC Adv, 2015, 5(27): 20747 DOI: 10.1039/C4RA16721J
|
[11] |
Saeidi K, Gao X, Zhong Y, et al. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A, 2015, 625: 221 DOI: 10.1016/j.msea.2014.12.018
|
[12] |
侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展. 粉末冶金技术, 2022, 40(2): 131
Hou W Q, Meng J, Liang J J, et al. Preparation technology and research progress of superalloy powders used for additive manufacturing. Powder Metall Technol, 2022, 40(2): 131
|
[13] |
Neil B, Gerald H M, Frederick S P. Introduction to the High Temperature Oxidation of Metals. London: Cambridge University Press, 2006
|
[14] |
Galicki D, List F, Babu S S, et al. Localized changes of stainless steel powder characteristics during selective laser melting additive manufacturing. Metall Mater Trans A, 2019, 50(3): 1582 DOI: 10.1007/s11661-018-5072-7
|
[15] |
Lee W H, Na T W, Yi K W, et al. Thermodynamic analysis of oxidation during selective laser melting of pure titanium. Rapid Prototyp J, 2020, 26(8): 1401 DOI: 10.1108/RPJ-08-2019-0226
|
[16] |
Gasper A N D, Szost B, Wang X, et al. Spatter and oxide formation in laser powder bed fusion Inconel 718. Addit Manuf, 2018, 24: 446
|
[17] |
Deng P, Karadge M, Rebak B R, et al. The origin and formation of oxygen inclusions in austenitic stainless steels manufactured by laser powder bed fusion. Addit Manuf, 2020, 35: 101334
|
[18] |
段豪剑. 钢铁中非金属夹杂物相关界面现象的基础研究[学位论文]. 北京: 北京科技大学, 2018
Duan H J. Fundamental on Interfacial Phenomena of Non-Metallic Inclusions in Molten Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
|
[19] |
Wasai K, Mukai K. Thermodynamic analysis on metastable alumina formation in aluminum deoxidized iron based on ostwald’s step rule and classical homogeneous nucleation theories. ISIJ Int, 2002, 42(5): 467 DOI: 10.2355/isijinternational.42.467
|
[20] |
Yang L, Zhang W, He L, et al. Study on the growth and morphology evolution of titanium oxide clusters in molten iron with molecular dynamics simulation. RSC Adv, 2019, 9(56): 32620 DOI: 10.1039/C9RA05628A
|
[21] |
Zhao D, Bao W, Li H, et al. Cluster-assisted nucleation mechanism of titanium oxides in Fe–Ti supercooled alloys. J Alloys Compd, 2018, 744: 797 DOI: 10.1016/j.jallcom.2018.02.148
|
[22] |
Yang X L, Gao F, Tang F Z, et al. Effect of surface oxides on the melting and solidification of 316L stainless steel powder for additive manufacturing. Metall Mater Trans A, 2021, 52(10): 1
|
[23] |
Yang X L, Tang F Z, Hao X J, et al. Oxide evolution during the solidification of 316L stainless steel from additive manufacturing powders with different oxygen contents. Metall Mater Trans B, 2021, 52(4): 1
|
[24] |
Tan J H, Wong W L E, Dalgarno K W. An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit Manuf, 2017, 18: 228
|
[25] |
Hebert R J. Viewpoint: metallurgical aspects of powder bed metal additive manufacturing. J Mater Sci, 2016, 51(3): 1165 DOI: 10.1007/s10853-015-9479-x
|
[26] |
Lu S, Fujii H, Sugiyama H, et al. Weld penetration and marangoni convection with oxide fluxes in GTA welding. Mater Trans, 2002, 43(11): 2926 DOI: 10.2320/matertrans.43.2926
|
[27] |
Sun Z, Tan X, Tor S B, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater, 2018, 10(4): 127 DOI: 10.1038/s41427-018-0018-5
|
[28] |
Williams R, Matthew B, Neil H, et al. The impact of oxidised powder particles on the microstructure and mechanical properties of Ti–6Al–4V processed by laser powder bed fusion. Addit Manuf, 2021, 46: 102181
|
[29] |
Attar H, Ehtemam H S, Kent D, et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review. Int J Mach Tools Manuf, 2018, 133: 85 DOI: 10.1016/j.ijmachtools.2018.06.003
|
[30] |
Leung C L A, Marussi S, Towrie M, et al. The effect of powder oxidation on defect formation in laser additive manufacturing. Acta Mater, 2019, 166: 294 DOI: 10.1016/j.actamat.2018.12.027
|
[31] |
Reinhart A, Ansell T, Smith W, et al. Oxide reinforced Ti64 composites processed by selective laser melting. J Mater Eng Perform, 2021, 30: 6949 DOI: 10.1007/s11665-021-06077-5
|
[32] |
Qiu C, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater, 2015, 96: 72 DOI: 10.1016/j.actamat.2015.06.004
|
[33] |
Bellot J P, Defay B, Jourdan J, et al. Inclusion behavior during the electron beam button melting test. J Mater Eng Perform, 2012, 21(10): 2140 DOI: 10.1007/s11665-012-0153-z
|
[34] |
Louvis E, Fox P, Sutcliffe C J. Selective laser melting of aluminum components. J Mater Process Technol, 2011, 211(2): 275 DOI: 10.1016/j.jmatprotec.2010.09.019
|
[35] |
Gu D, Dai D. Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material. J Appl Phys, 2016, 120(8): 083104 DOI: 10.1063/1.4961410
|
[36] |
Yuan P, Gu D, Dai D. Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites. Mater Des, 2015, 82: 46 DOI: 10.1016/j.matdes.2015.05.041
|
[37] |
Eo D R, Park S H, Cho J W. Inclusion evolution in additive manufactured 316L stainless steel by laser metal deposition process. Mater Des, 2018, 155: 212 DOI: 10.1016/j.matdes.2018.06.001
|
[38] |
Cherry J A, Davies H M, Mehmood S, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol, 2015, 76(5-8): 869 DOI: 10.1007/s00170-014-6297-2
|
[39] |
Doñte B C, Kürnsteiner P, Stern F, et al. Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders. Acta Mater, 2021, 206: 116566 DOI: 10.1016/j.actamat.2020.116566
|
[40] |
Ghasemi A, Fereiduni E, Balbaa M, et al. Influence of alloying elements on laser powder bed fusion processability of aluminum: A new insight into the oxidation tendency. Addit Manuf, 2021, 46: 102145
|
[41] |
Song M, Lin X, Liu F, et al. Effect of environmental oxygen content on the oxide inclusion in laser solid formed AISI 420 stainless steel. Mater Des, 2016, 90: 459 DOI: 10.1016/j.matdes.2015.11.003
|
[42] |
Lee T K, Kim H J, Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds. ISIJ Int, 2000, 40(12): 1260 DOI: 10.2355/isijinternational.40.1260
|
[43] |
Sarma D S, Karasev A V, Jönsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int, 2009, 49(7): 1063 DOI: 10.2355/isijinternational.49.1063
|
[44] |
王德永, 屈天鹏. 镁洁净钢新技术发展与展望. 炼钢, 2020, 36(5): 1
Wang D Y, Qu T P. Development and prospect of Mg clean steel technology. Steelmaking, 2020, 36(5): 1
|
[45] |
Pan K, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures. Materials, 2016, 9(6): 417 DOI: 10.3390/ma9060417
|
[46] |
Liang W, Geng R M, Zhi J G, et al. Oxide metallurgy technology in high strength steel: A review. Materials, 2022, 15(4): 1350 DOI: 10.3390/ma15041350
|
[47] |
闫福朝. 氧化物弥散强化铁素体合金新型制备技术及微观结构研究[学位论文]. 合肥: 中国科学技术大学, 2021
Yan F Z. Novel Fabrication Technology and Microstructure Study of Oxide Dispersion Strengthened Ferrite Alloy [Dissertation]. Hefei: University of Science and Technology of China, 2021
|
[48] |
Xu L Y, Yang J, Wang R Z, et al. Effect of Mg content on the microstructure and toughness of heat-affected zone of steel plate after high heat input welding. Metall Mater Trans A, 2016, 47(7): 3354 DOI: 10.1007/s11661-016-3535-2
|
[49] |
Li X, Zhang T, Min Y, et al. Effect of magnesium addition in low-carbon steel part 1: behavior of austenite grain growth. Ironmak Steelmak, 2019, 46(3): 292 DOI: 10.1080/03019233.2017.1368953
|
[50] |
Li X, Zhang T, Min Y, et al. Effect of magnesium addition in low-carbon steel part 2: behavior of austenite grain growth. Ironmak Steelmak, 2019, 46(3): 301 DOI: 10.1080/03019233.2017.1376427
|
[51] |
田博, 孙立根, 朱立光, 等. 高温条件下Mg处理船体钢钉扎粒子的作用行为. 炼钢, 2020, 36(6): 72
Tian B, Sun L G, Zhu L G. The behavior of pinned particles for Mg treated shipbuilding steel under high temperature. Steelmaking, 2020, 36(6): 72
|
[52] |
安正源, 吴开明, 卢伟煜, 等. Zr–Ti复合脱氧对低碳高强钢大线能量焊接粗晶区韧性的影响. 材料热处理学报, 2013, 34(7): 106
An Z Y, Wu K M, Lu B W, et al. Effect of Zr–Ti combined deoxidation on toughness of coarse-grained heat-affected zone with high heat input welding of low carbon high strength steels. Trans Mater Heat Treat, 2013, 34(7): 106
|
[53] |
Wang X, Wang C, Kang J, et al. Improved toughness of double-pass welding heat affected zone by fine Ti–Ca oxide inclusions for high-strength low-alloy steel. Mater Sci Eng A, 2020, 780: 139198 DOI: 10.1016/j.msea.2020.139198
|
[54] |
梅志, 万天敏, 娄德春. 稀土变质剂对超低碳钢铸态晶粒细化的研究. 特种铸造及有色金属, 2002(2): 3
Mei Z, Wan T M, Lou D C. Effect of rare earth modifier on grain refinement of ultra-low carbon steel as cast. Spec Cast Nonferrous Alloy, 2002(2): 3
|
[55] |
徐明沁. 纯铁的异质形核行为及原子尺度结构起源的探究[学位论文]. 上海: 上海交通大学, 2018
Xu M Q. Heterogeneous Nucleation Behavior of Pure Iron and Its Atomic Level Structure Origin [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2018
|
[56] |
杨庆祥, 高聿为, 廖波, 等. 夹杂物在中高碳钢堆焊金属中成为初生奥氏体非均质形核核心的探讨. 中国稀土学报, 2000, 18(2): 138
Yang Q X, Gao Y W, Liao B, et al. Discussion of inclusion as heterogeneous nuclei of primary austenite of medium-high carbon steel during hard facing. J Chin Soc Rare Earths, 2000, 18(2): 138
|
[57] |
潘宁, 宋波, 翟启杰. 固态化合物对钢液非均质形核的触媒作用. 金属学报, 2009, 45(12): 1441
Pan N, Song B, Zhai Q J. Catalysis on heterogeneous nucleation of solid compounds liquid steel. Acta Metall Sci, 2009, 45(12): 1441
|
[58] |
计云萍, 亢磊, 宋艳青, 等. RE2O3对钢液凝固时异质形核促进效用的晶体学计算. 稀有金属材料与工程, 2017, 46(10): 2889
Ji Y P, Kang L, Song Y Q, et al. Crystallographic calculation about heterogeneous nucleation potency of RE2O3 in liquid steel. Rare Met Mater Eng, 2017, 46(10): 2889
|
[59] |
Hsu T H, Chang Y J, Huang C Y, et al. Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4PH stainless steel. J Alloys Compd, 2019, 803: 30 DOI: 10.1016/j.jallcom.2019.06.289
|
[60] |
Chen P, Yang C, Li S, et al. In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion. Mater Des, 2020, 194: 108966 DOI: 10.1016/j.matdes.2020.108966
|
[61] |
Liu X Y, Sui Y, Li J B, et al. Laser metal deposited steel alloys with uniform microstructures and improved properties prepared by addition of small amounts of dispersed Y2O3 nanoparticles. Mater Sci Eng A, 2021, 86: 140827
|
[62] |
Ghayoor M, Lee K, He Y J, et al. Selective laser melting of austenitic oxide dispersion strengthened steel: Processing, microstructural evolution and strengthening mechanisms. Mater Sci Eng A, 2020, 788: 139532 DOI: 10.1016/j.msea.2020.139532
|
[63] |
Pobel C R, Lodes M A, Körner C. Selective electron beam melting of oxide dispersion strengthened copper. Adv Eng Mater, 2018, 20: 1800068 DOI: 10.1002/adem.201800068
|
[64] |
Han Q Q, Setchi R, Lacan F, et al. Selective laser melting of advanced Al–Al2O3 nanocomposites: Simulation, microstructure and mechanical properties. Mater Sci Eng A, 2017, 698: 162 DOI: 10.1016/j.msea.2017.05.061
|
[65] |
Hu Z P, Zhao Y N, Guan K, et al. Pure tungsten and oxide dispersion strengthened tungsten manufactured by selective laser melting: Microstructure and cracking mechanism. Addit Manuf, 2020, 36: 101579
|
[66] |
Kenel C, Luca A D, Joglekar S S, et al. Evolution of Y2O3 dispersoids during laser powder bed fusion of oxide dispersion strengthened Ni–Cr–Al–Ti γ/γ’ superalloy. Addit Manuf, 2021, 47: 102224
|
[67] |
Zhang X, Cao H B, Yang X Y, et al. Enhanced thermal stability of the cellular structure through nano-scale oxide precipitation in 3D printed 316L stainless steel. Fusion Eng Des, 2021, 164: 112213 DOI: 10.1016/j.fusengdes.2020.112213
|
[68] |
Liu L, Ding Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater Today, 2018, 21(4): 354 DOI: 10.1016/j.mattod.2017.11.004
|
[69] |
Voisin T, Forien J B, Perron A, et al. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Mater, 2021, 203: 116476 DOI: 10.1016/j.actamat.2020.11.018
|