AdvancedSearch
LI Yue, ZHAO Dingguo, SU Xinlei, LIU Yan, WANG Shuhuan. Viscosity model of CoCrFeMnNi high entropy alloys[J]. Powder Metallurgy Technology, 2024, 42(4): 411-417. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080008
Citation: LI Yue, ZHAO Dingguo, SU Xinlei, LIU Yan, WANG Shuhuan. Viscosity model of CoCrFeMnNi high entropy alloys[J]. Powder Metallurgy Technology, 2024, 42(4): 411-417. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080008

Viscosity model of CoCrFeMnNi high entropy alloys

More Information
  • Corresponding author:

    ZHAO Dingguo, E-mail: zhaodingguo@ncst.edu.cn

  • Received Date: August 11, 2022
  • Available Online: December 14, 2022
  • The viscosity of high entropy alloys in liquid atomization process has the important influence on the atomization effect. Using the existing ternary alloy viscosity model, a new viscosity model of the CoCrFeMnNi high-entropy alloy melt with equal molar ratio was established through the model expansion in this paper. The influence of temperature on the viscosity of five-element high entropy alloys was studied. The viscosity curves were drawn and modified, and the relationship between temperature and viscosity of high entropy alloys was calculated. In the results, the viscosity decreases from 0.0211 Pa·s to 0.0114 Pa·s when the temperature increases from 1360 K to 2000 K. With the increase of the element content, the viscosity of high entropy alloys increases. Cr has the most significant effect on the alloy viscosity, while Fe and Co have the same effect on the viscosity. The prediction model results of liquid viscosity for five-element high entropy alloys are consistent with the experimental results of thermal state experiment.

  • [1]
    Bel’tyukov A L, Lad’yanov V I, Shishmarin A I, et al. Viscosity of liquid amorphizing alloys of iron with boron and silicon. J Non-Cryst Solids, 2014, 401(1430): 245
    [2]
    Sato Y, Sugisawa K, Aoki D, et al. Effect of chromium and nickel on the viscosity of molten iron // The Proceedings of the Materials and Processing Conference. Jeju Island, 2003: 5
    [3]
    Liu Y H, Lü X W, Bai C G, et al. Viscosity evaluation of Fe−Ni−Co ternary alloy from the measure binary systems. J Ind Eng Chem, 2015, 30: 106 DOI: 10.1016/j.jiec.2015.05.009
    [4]
    Kobatake H, Brillo J. Density and viscosity of ternary Cr−Fe−Ni liquid alloys. J Mater Sci, 2013, 48(19): 6818 DOI: 10.1007/s10853-013-7487-2
    [5]
    王子鑫, 张勇. FeCrVTa0.4W0.4高熵合金氮化物薄膜的微观结构与性能. 工程科学学报, 2021, 43(5): 684

    Wang Z X, Zhang Y. Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films. Chin J Eng, 2021, 43(5): 684
    [6]
    黄浩, 张勇. 高熵合金与非晶合金柔性材料. 工程科学学报, 2021, 43(1): 119

    Huang H, Zhang Y. High-entropy alloy and metallic glass flexible materials. Chin J Eng, 2021, 43(1): 119
    [7]
    李鑫, 王永祥. 气雾化工艺参数对金属粉末粒度影响的研究. 有色金属科学与工程, 2002(3): 27

    Li X, Wang Y X. Study on the effect of atomization parameters on the granularity of metal powder. Nonferrous Met Sci Eng, 2002(3): 27
    [8]
    张健, 赵雄虎, 皮家安, 等. 粘度的测量方法及进展. 中国仪器仪表, 2018(4): 81 DOI: 10.3969/j.issn.1005-2852.2018.04.019

    Zhang J, Zhao X H, Pi J A, et al. Methods and progress of the measurement of viscosity. China Instrum, 2018(4): 81 DOI: 10.3969/j.issn.1005-2852.2018.04.019
    [9]
    刘文鹏, 张庆礼, 殷绍唐, 等. 粘度测量方法进展. 人工晶体学报, 2007(2): 381 DOI: 10.3969/j.issn.1000-985X.2007.02.031

    Liu W P, Zhang Q L, Yin S T, et al. Progress of the viscosity measurement methods. J Synth Cryst, 2007(2): 381 DOI: 10.3969/j.issn.1000-985X.2007.02.031
    [10]
    李颖. Fe−Si−B−P−C合金熔体粘度和表面张力的研究[学位论文]. 北京: 钢铁研究总院, 2018

    Li Y. Study on Investigation on Viscosity and Surface Tension of FeSiBPC Alloy Melts [Dissertation]. Beijing: Iron and Steel Research Institute, 2018
    [11]
    顾攀. 含钒铬铁水粘度及熔化温度研究[学位论文]. 重庆: 重庆大学, 2018

    Gu P. Investigation on Viscosity and Melting Temperature of V−Cr Containing Hot Metal [Dissertation]. Chongqing: Chongqing University, 2018
    [12]
    Wu M, Li J Q. Estimation of the viscosities of melt for Sn-based ternary lead-free solder alloys. Philos Mag, 2019, 99(20): 2531 DOI: 10.1080/14786435.2019.1631500
    [13]
    龙卧云, 袁神佑, 曹哥尽, 等. 基于扩展Miedema模型预测Zr−Al−Cu合金的非晶形成范围. 内江师范学院学报, 2014, 29(12): 19

    Long W Y, Yuan S Y, Cao G J, et al. Prediction of amorphous-forming range for ZR−Al−Cu alloys based on extended Miedema’s model. J Neijiang Normal Univ, 2014, 29(12): 19
    [14]
    孙顺平, 易丹青, 臧冰, 等. 基于Miedema模型和Toop模型的Al−Si−Er合金热力学参数计算. 稀有金属材料与工程, 2010, 39(11): 1974

    Sun S P, Yi D Q, Zang B, et al. Calculation of thermodynamic parameters of Al−Si−Er alloy based on Miedema model and Toop model. Rare Met Mate Eng, 2010, 39(11): 1974
    [15]
    黄福祥, 尹平, 李司山, 等. 计算合金热力学性质的Miedema理论. 重庆理工大学学报(自然科学版), 2010, 24(1): 92

    Huang F X, Yin P, Li S S, et al. Miedema model for calculating thermodynamic properties of alloys system. J Chongqing Univ Technol Nat Sci, 2010, 24(1): 92
    [16]
    刘衡, 尹洪波, 周仁杰, 等. Zr−Al−Ni−Cu合金非晶形成范围的Miedema模型预测. 广西师范学院学报(自然科学版), 2018, 35(1): 41

    Liu H, Yin H B, Zhou R J, et al. Prediction of amorphous-forming composition range for Zr−Al−Ni−Cu alloys based on Miedema’s model. J Guangxi Teach Edu Univ Nat Sci, 2018, 35(1): 41
    [17]
    王山山, 胡强, 赵新明, 等. 气雾化法制备Fe−6.5%Si−x%Ni合金粉末及其性能的研究. 稀有金属, 2017, 41(11): 1231

    Wang S S, Hu Q, Zhao X M, et al. Performance characterization of gas-atomized Fe−6.5%Si−x%Ni powders. Rare Met, 2017, 41(11): 1231
  • Related Articles

    [1]LIN Li, LIU Jun, ZHOU Chun, HU Hai-feng. Optimization analysis of die mass and particle model in metal powder impact compaction[J]. Powder Metallurgy Technology, 2018, 36(3): 182-189. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.004
    [2]Cao Ruijun, Lin Chenguang. Research progress of hardness model for WC-Co cemented carbide[J]. Powder Metallurgy Technology, 2013, 31(5): 374-378. DOI: 10.3969/j.issn.1001-3784.2013.05.011
    [3]Dai Yu, Huang Baiyun, Liu Yong, Yang Jiangao. Mathematical model and analysis of atomization process with lineal instability[J]. Powder Metallurgy Technology, 2009, 27(5): 331-335.
    [4]Heat Transfer Model of Friction Sheets during Skidding[J]. Powder Metallurgy Technology, 2003, 21(1): 19-21. DOI: 10.3321/j.issn:1001-3784.2003.01.002
    [5]Research on Sintering Model of ZAO Ceramics[J]. Powder Metallurgy Technology, 2002, 20(5): 267-270. DOI: 10.3321/j.issn:1001-3784.2002.05.002
    [6]Modified Linear Packing Density Model of Powder Particles[J]. Powder Metallurgy Technology, 2001, 19(4): 208-211. DOI: 10.3321/j.issn:1001-3784.2001.04.004
    [7]Modified Linear Packing Density Model of Powder Particles Wang Haibing Liu Yong Huang Baiyun Zhou kechao[J]. Powder Metallurgy Technology, 2001, 19(3): 140-143. DOI: 10.3321/j.issn:1001-3784.2001.03.003
    [8]Cheng Yuanfang, Guo Shiju, Lai Heyi. COUPLING MODEL OF MULTIPLE SINTERING MECHANISMS FOR THE INITIAL STAGE SINTERING[J]. Powder Metallurgy Technology, 1999, 17(4): 257-263.
    [9]Cheng Yuanfang, Guo Shiju, Lai Heyi. THEORETICAL MODELLING PROGRESS——1.THE COMPARISON OF THE UNIT MODEL FOR THE FIRST STAGE OF GRAVITY SINTERING[J]. Powder Metallurgy Technology, 1999, 17(3): 216-221.
    [10]Yang Liushuan, Pang Lijun, Liu Yongzhang, Yang Gencang, Zhou Yaohe. PHYSICAL MODEL AND MATHEMATICAL ANALYSES ON THERMAL PROCESS OF SPRAY-DEPOSITED ZA27 ALLOY DROPLETS[J]. Powder Metallurgy Technology, 1995, 13(3): 163-169.

Catalog

    Article Metrics

    Article views (168) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return