AdvancedSearch
HAN Xinlei, FAN Yuzhuo, LIANG Yingxue, CHEN Liangyu, PENG Yiyang, LI Guijing. Effect of pressing force on physical and electrical contact properties of silver-based contact materials[J]. Powder Metallurgy Technology, 2025, 43(1): 42-51. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100006
Citation: HAN Xinlei, FAN Yuzhuo, LIANG Yingxue, CHEN Liangyu, PENG Yiyang, LI Guijing. Effect of pressing force on physical and electrical contact properties of silver-based contact materials[J]. Powder Metallurgy Technology, 2025, 43(1): 42-51. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100006

Effect of pressing force on physical and electrical contact properties of silver-based contact materials

More Information
  • Corresponding author:

    LI Guijing, E-mail: ligj@stdu.edu.cn

  • Received Date: October 04, 2022
  • Accepted Date: October 04, 2022
  • Available Online: May 08, 2023
  • Ag/SnO2, Ag/ZnO, Ag/Ni, and Ag/W silver-based contact materials were prepared by powder metallurgy method. The effects of pressing force on the physical and electrical contact properties of the different silver-based contact materials were systematically studied. The results show that the relative density of the Ag/SnO2 and Ag/ZnO materials significantly increases with the increase of pressing force, while the relative density of the Ag/Ni and Ag/W alloys obviously decreases. When the pressing force reaches 600 MPa, the electrical conductivity of the Ag/SnO2 materials can be increased from 35.2% IACS to 52.6% IACS. The electrical contact properties of the silver-based contact materials are greatly affected by pressing force. The Ag/SnO2 and Ag/ZnO materials prepared under 600 MPa show the lower arc energy and contact resistance. Especially, the Ag/ZnO materials exhibit the best arc erosion resistance, and the contact resistance is less affected by pressing force. Although the conductivity of the Ag/W alloys is up to 93.0% IACS, the anode mass loss is great after arc erosion, the cathode surface is rough, the obvious cracks appear, and the contact resistance is greatly affected by the pressing force. In contrast, the mass loss of the Ag/Ni alloys is lower, which mainly occurs at the cathode, showing the better arc erosion resistance.

  • [1]
    王塞北, 彭明军, 孙勇, 等. 金属触头电接触性能研究进展. 材料导报, 2020, 34(9): 09117 DOI: 10.11896/cldb.18110130

    Wang S B, Peng M J, Sun Y, et al. Research progress on electrical contact performance of metal contacts. Maters Rep, 2020, 34(9): 09117 DOI: 10.11896/cldb.18110130
    [2]
    赵燕燕, 黄福祥. 银基电接触材料的理论计算研究及发展现状. 重庆理工大学学报(自然科学), 2014, 28(3): 58

    Zhao Y Y, Huang F X, Theoretical calculation and development status of silver-based electrical contact material. J Chongqing Univ Technol Nat Sci, 2014, 28(3): 58
    [3]
    王金龙, 付翀, 宁静, 等. Ag–SnO2电接触材料的研究进展及发展趋势. 贵金属, 2021, 42(3): 85 DOI: 10.3969/j.issn.1004-0676.2021.03.015

    Wang J L, Fu C, Ning J, et al. Research progress and development trend of Ag–SnO2 electrical contact materials. Prec Met, 2021, 42(3): 85 DOI: 10.3969/j.issn.1004-0676.2021.03.015
    [4]
    张文毓, 电接触材料的研究与应用. 上海电气技术, 2021, 14(3): 62

    Zhang W Y. The application and progress of the electrical contact materials. J Shanghai Electron Technol, 2021, 14(3): 62
    [5]
    周建仁, 陈松, 毕亚男, 等. 银基电接触材料的最新研究进展和展望. 贵金属, 2020, 41(增刊1): 1

    Zhou J R, Chen S, Bi Y N, et al. The latest research progress and prospect of Ag-based electrical contact materials. Prec Met, 2020, 41(Suppl 1): 1
    [6]
    施琴, 朱和军. 银包覆过渡族金属硒化物的制备及银基复合材料性能. 粉末冶金技术, 2023, 41(6): 536

    Shi Q, Zhu H J. Preparation of silver-coated transition metal selenides and properties of silver-based composites. Powder Metall Technol, 2023, 41(6): 536
    [7]
    吴新合, 沈涛, 杨辉, 等. 环保型氧化物增强银基电接触功能复合材料研究进展. 贵金属, 2021, 42(1): 79 DOI: 10.3969/j.issn.1004-0676.2021.01.014

    Wu X H, Shen T, Yang H, et al. Advances in eco-friendly oxide-reinforced silver-based electrical contact materials. Prec Met, 2021, 42(1): 79 DOI: 10.3969/j.issn.1004-0676.2021.01.014
    [8]
    Wei Z J, Zhang L J, Shen Q H, et al. Preparation by different methods and characterization of Ag/ZnO composite for application in electrical contact materials. Rare Met Mater Eng, 2016, 45(Suppl 1): 513
    [9]
    李朕, 王召斌, 陈康宁, 等. 银氧化锡触头制备工艺对比及其电弧侵蚀特性综述. 电工材料, 2021(4): 3

    Li Z, Wang Z B, Chen K N, et al. Review of comparison of silver tin oxide contact preparation process and arc erosion characteristics. Electron Eng Mater, 2021(4): 3
    [10]
    陈晓华, 贾成厂, 刘向兵. 粉末冶金技术在银基触点材料中的应用. 粉末冶金工业, 2009, 19(4): 41 DOI: 10.3969/j.issn.1006-6543.2009.04.009

    Chen X H, Jia C C, Liu X B. Applications of powder metallurgy technology to manufacture of silver-based contact materials. Powder Metall Ind, 2009, 19(4): 41 DOI: 10.3969/j.issn.1006-6543.2009.04.009
    [11]
    张志伟, 沈喜海, 张卫国, 等. Ag/SnO2材料挤压变形过程中的性能研究. 粉末冶金技术, 2011, 29(2): 102

    Zhang Z W, Shen X H, Zhang W G, et al. The strengthening mechanism of Ag/SnO2 materials in the severe plastic deformation. Powder Metall Technol, 2011, 29(2): 102
    [12]
    李爱坤, 陈永泰, 胡洁琼, 等. Ni含量对AgNi电接触材料性能和电弧特性的影响. 中国有色金属学报, 2022, 32(12): 3746

    Li A K, Chen Y T, Hu J Q, et al. Effect of Ni content on performance and arc behavior of AgNi electric contact material. Chin J Nonferrous Met, 2022, 32(12): 3746
    [13]
    杨芳儿, 唐建新, 郑晓华, 等. La2O3掺杂AgSnO2电接触材料的制备及性能研究. 稀有金属材料与工程, 2018, 47(增刊2): 182

    Yang F E, Tang J X, Zheng X H, et al. Preparation and properties of La2O3 doped AgSnO2 electrical contact materials. Rare Met Mater Eng, 2018, 47(Suppl 2): 182
    [14]
    王海涛, 杨梦林, 章枚, 等. 电流等级对掺杂AgSnO2触头材料电接触性能的影响. 稀有金属与硬质合金, 2019, 47(6): 74

    Wang H T, Yang M L, Zhang M, et al. Effect of current levels on electrical contact performance of doped AgSnO2 contact material. Rare Met Cement Carb, 2019, 47(6): 74
    [15]
    施琴, 左文艳, 赵光霞. 含Cr和NbSe2铜基电接触复合材料的制备及性能研究. 粉末冶金技术. 2020, 38(6): 455

    Shi Q, Zuo W Y, Zhao G X. Preparation and properties of Cu-based electrical contact composites containing Cr and NbSe2. Powder Metall Technol, 2020, 38(6): 455
    [16]
    张小红, 于欢, 胡连喜. 高强AZ61Mg–18%Ti复合材料的制备与力学性能. 粉末冶金技术, 2021, 39(6): 532

    Zhang X H, Yu H, Hu L X. Fabrication and mechanical properties of high-strength AZ61Mg–18%Ti composites. Powder Metall Technol, 2021, 39(6): 532
    [17]
    郑晓华, 王贵葱, 张玲洁, 等. 成形工艺对Ag/SnO2电接触材料物理及力学性能的影响. 热加工工艺, 2020, 49(14): 75

    Zheng X H, Wang G C, Zhang L J, et al. Influence of forming process on physical and mechanical properties of Ag/SnO2 electrical contact materials. Hot Work Technol, 2020, 49(14): 75
    [18]
    杜丹, 赵强莉, 王哲, 等. AgSnO2触头微观结构设计及电弧侵蚀模拟的进展. 贵金属, 2021, 42(2): 72 DOI: 10.3969/j.issn.1004-0676.2021.02.013

    Du D, Zhao Q L, Wang Z, et al. Research progress on microstructure design and arc-erosion simulation of AgSnO2 contact materials. Prec Met, 2021, 42(2): 72 DOI: 10.3969/j.issn.1004-0676.2021.02.013
    [19]
    冯朋飞, 周光华, 黄兴隆, 等. AgZnO电触头材料制备工艺研究现状. 电工材料, 2020(6): 3

    Feng P F, Zhou G H, Huang X L, et al. Research status of preparation of AgZnO electrical contact materials. Electron Eng Mater, 2020(6): 3
    [20]
    Luo Q F, Wang Y P, Ding B J. Microstructure and arc erosion characteristics of Ag/Ni contacts by mechanical alloying. IEEE Trans Compon Packag Technol, 2005, 28(4): 785 DOI: 10.1109/TCAPT.2005.859668
    [21]
    Li H Y, Wang X H, Fei Y, et al. Effect of electric load characteristics on the arc erosion behavior of Ag–8wt.%Ni electrical contact material prepared by spark plasma sintering. Sens Actuators A, 2021, 326: 112718
    [22]
    杨昌麟, 张秀芳, 颜小芳, 等. 高性能继电器用AgNi触头材料的研究. 电工材料, 2021(3): 9

    Yang C L, Sun X F, Yan X F, et al. Study on silver nickel contact material for high performance relay. Electron Eng Mater, 2021(3): 9
    [23]
    孟繁琦, 高家诚, 王勇, 等. 银钨触头材料的制备工艺及使用性能. 材料导报, 2006, 20(增刊1): 321

    Meng F Q, Gao J C, Wang Y, et al. The study on process and properties of Ag–W contact material. Mater Rev, 2006, 20(Suppl 1): 321
    [24]
    张广庆, 徐楠, 王瑗. 粉末冶金压制成形理论与工艺综述. 热加工工艺, 2017, 46(19): 9

    Zhang G Q, Xu N, Wang Y. Review on theory and technology of powder metallurgy pressing forming. Hot Work Technol, 2017, 46(19): 9
    [25]
    张亚楠, 刘海波, 任浩楠, 等. 压制工艺和粒径对粉末冶金Ti–1Al–8V–5Fe合金组织性能的影响. 宇航材料工艺, 2020, 50(6): 64

    Zhang Y N, Liu H B, Ren H N, et al. Effect of compaction process and particle size on the microstructure and mechanical properties of PM Ti–1Al–8V–5Fe Alloy. Aerosp Mater Technol, 2020, 50(6): 64
  • Related Articles

    [1]HUANG Shaofu, CHENG Lei, LIU Jian, ZENG Xiangling, ZHENG Yang, DU Xian. Study on formability of NbMoTaNiCr refractory high entropy alloy by wire arc additive manufacturing[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024070005
    [2]Lu Baiping, Wei Wen, Liu Cancheng, Xu Hui. Superfine Al2O3 powder prepared by high-energy milling[J]. Powder Metallurgy Technology, 2012, 30(2): 130-134,139. DOI: 10.3969/j.issn.1001-3784.2012.02.009
    [3]Hou Conghua, Lu Yuling, Zhang Jinglin, Wang Jingyu. Study on the impact of hydrogen content on nickel nanoparticles prepared by arc plasma[J]. Powder Metallurgy Technology, 2010, 28(4): 253-255,261.
    [4]Wang Yongdong, Liu Xing, Li Bairu, Liu Ruitang. The investigation on the microstructure and properties of TiB/FeB reinforced Fe matrix composites coating by argon arc cladding[J]. Powder Metallurgy Technology, 2009, 27(3): 182-184.
    [5]Wang Yongdong, Wang Zhenting, Chen Lili, Liu Ruitang. Property and microstructure of the argon shielded arc clad MoNiSi/ Ni3Si metal silieide alloys composite coating on Q235 steel surface[J]. Powder Metallurgy Technology, 2009, 27(2): 83-85,90.
    [6]Wang Zhenting, Meng Junsheng, Zhao Guogang. Sliding wear behaviors of in-situ synthesis TiC/Ni60A composite coatings by argon arc cladding[J]. Powder Metallurgy Technology, 2008, 26(3): 183-186.
    [7]Wei Zhiqiang, Xia Tiandong, Yan Zhijin, Bai Lifeng, Yan Pengxun. Preparation of Al nanopowders by confined arc plasma[J]. Powder Metallurgy Technology, 2006, 24(3): 170-174. DOI: 10.3321/j.issn:1001-3784.2006.03.003
    [8]Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219.
    [9]Huang Rongfang, Lin Chengfu. SILICON CARBIDE BASED SUPERFINE POWDER PREPARED BY ARC PLASMA JET VAPOUR-REACTION PROCESS[J]. Powder Metallurgy Technology, 1992, 10(3): 178-181.
    [10]Cheng Bencheng, Jin Shouri, Zhao Xinluo. A STUDY ON THE TECHNIQUE OF PREPARING ULTRAFINE AlN POWDER BY ARC PLASMA[J]. Powder Metallurgy Technology, 1992, 10(1): 25-30.
  • Cited by

    Periodical cited type(6)

    1. 李晓妍. 一种去毛刺整形工装的设计及受力分析. 冶金与材料. 2025(01): 32-34 .
    2. 位迎宾,于东林,王兴旺,王皓,山利媛. 铜含量对铁基粉末冶金复合材料密度分布的数值模拟. 冶金与材料. 2025(03): 4-6 .
    3. 马玲,徐岩,杜建华,韩明,邱倩,张楠,纪箴. 铁铜基粉末冶金材料制动工况下的摩擦磨损性能. 粉末冶金技术. 2024(04): 354-360 . 本站查看
    4. 付传起,耿奥,丁亚东,汪滦. 石墨烯含量对铜铁基自润滑摩擦材料组织结构及摩擦性能的影响. 表面技术. 2024(15): 88-99 .
    5. 郑海飞,尹延国,李蓉蓉. FeS表面改性制备铁基轴承材料的摩擦学性能. 粉末冶金技术. 2024(05): 516-524 . 本站查看
    6. 苏镇坚. 铜基粉末冶金材料摩擦界面自愈性能试验分析. 山西冶金. 2024(11): 41-43+118 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (755) PDF downloads (35) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return