Citation: | YU Zhanxiang, HE Fang, XIE Gaoshang. Effect of Cr on the properties and microstructure of nickel aluminum metal bond[J]. Powder Metallurgy Technology, 2024, 42(4): 374-380, 387. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110001 |
Vacuum hot pressing sintering was used to add Cr powders to the nickel aluminum metal bond to improve the mechanical properties of nickel aluminum metal bond. The effects of Cr powder content (molar fraction) and sintering temperature on the mechanical properties and microstructure of the nickel aluminum metal bond were studied. The results show that, Cr plays the role of solid solution strengthening, which can improve the mechanical properties of the nickel aluminum metal bond. As the Cr content increases, the flexural strength of the bond increases first and then decreases, while the Rockwell hardness shows an overall increase tendency at 800 ℃. When Cr molar fraction is 12%, the optimal flexural strength and Rockwell hardness are 178 MPa and HRB 104.2, respectively, which are increased by 36.9% and 6.8% compared with the pure nickel aluminum metal bond.
[1] |
林峰. 超硬材料的研究进展. 新型工业化, 2016, 6(3): 28
Lin F. Research progress of super-hard materials. New Ind, 2016, 6(3): 28
|
[2] |
吴燕平, 燕青芝. 金属结合剂金刚石工具研究进展. 金刚石与磨料磨具工程, 2019, 39(2): 37
Wu Y P, Yan Q Z. Research progress of metal bond diamond tools. Diamond Abras Eng, 2019, 39(2): 37
|
[3] |
Zhao X J, Duan L C. A review of the diamond retention capacity of metal bond matrices. Metals, 2018, 8(5): 307 DOI: 10.3390/met8050307
|
[4] |
Artini C, Muolo M L, Passerone A. Diamond–metal interfaces in cutting tools: a review. J Mater Sci, 2012, 47: 3252 DOI: 10.1007/s10853-011-6164-6
|
[5] |
吴颖. 新型金刚石工具铜基结合剂及其性能的研究[学位论文]. 重庆: 重庆大学, 2014
Wu Y. Study on New Cu-Matrix Binding Agent of Diamond Tools and Its Properties [Dissertation]. Chongqing: Chongqing University, 2014
|
[6] |
邓颖, 吴引江, 南海娟, 等. 处理工艺对Fe–Al合金粉末成形性及生坯压溃强度的影响. 粉末冶金技术, 2022, 40(3): 226
Deng Y, Wu Y J, Nan H J, et al. Effect of treatment process on the formability of Fe−Al alloy powders and the crushing strength of green compacts. Powder Metall Technol, 2022, 40(3): 226
|
[7] |
王峰, 奚正平, 汤慧萍, 等. Fe-Al合金多孔材料研究进展. 粉末冶金技术, 2010, 28(6): 463
Wang F, Xi Z P, Tang H P, et al. Research progress in Fe−Al alloy porous materials. Powder Metallu Technol, 2010, 28(6): 463
|
[8] |
Karczewski K, Stȩpniowski W J, Jóźwiak S. Highly-porous FeAl intermetallic foams formed via sintering with Eosin Y as a gas releasing agent. Mater Lett, 2016, 178: 268 DOI: 10.1016/j.matlet.2016.05.047
|
[9] |
李安, 刘世锋, 王伯健, 等. 放电等离子烧结金属多孔材料研究现状. 粉末冶金技术, 2017, 35(5): 378
Li A, Liu S F, Wang B J, et al. Developmental states of porous metal materials prepared by spark plasma sintering. Powder Metall Technol, 2017, 35(5): 378
|
[10] |
Jiao X Y, Feng P Z, Liu Y N, et al. Fabrication of highly porous TiAl3 intermetallics using titanium hydride as a reactant in the thermal explosion reaction. J Mater Res, 2018, 33: 2680 DOI: 10.1557/jmr.2018.293
|
[11] |
谭翠, 赵明勇, 叶仿健. 合金化元素Cr对青铜基金刚石砂轮导热性能及力学性能的影响. 金刚石与磨料磨具工程, 2017, 37(2): 69
Tang C, Zhao M Y, Ye F J. Effect of Cr powder on thermal conductivity and mechanical property of diamond tool. Diamond Abras Eng, 2017, 37(2): 69
|
[12] |
王建忠, 王昊, 杨坤, 等. 多孔Ni−Al系金属间化合物制备技术研究进展. 粉末冶金工业, 2021, 31(5): 1
Wang J Z, Wang H, Yang K, et al. Progress in preparation technology of porous Ni−Al intermetallics. Powder Metall Ind, 2021, 31(5): 1
|
[13] |
Li Z, Cai X, Ren X, et al. Rapid preparation of porous Ni–Al intermetallics by thermal explosion. Combust Sci Technol, 2019, 192(3): 486
|
[14] |
Shu Y M, Suzuki A, Takata N, et al. Fabrication of porous NiAl intermetallic compounds with a hierarchical open-cell structure by combustion synthesis reaction and space holder method. J Mater Process Technol, 2019, 264: 182 DOI: 10.1016/j.jmatprotec.2018.09.010
|
[15] |
穆云超, 韩警贤, 郭基凤, 等. 自蔓延高温合成法制备Ni−Al基金刚石复相材料. 人工晶体学报, 2014, 43(9): 2335 DOI: 10.3969/j.issn.1000-985X.2014.09.028
Mu Y C, Han J X, Guo J F, et al. Preparation of Ni−Al-based diamond composites by self-propagation high temperature synthesis method. J Synt Cryst, 2014, 43(9): 2335 DOI: 10.3969/j.issn.1000-985X.2014.09.028
|
[16] |
梁述举. 多孔金属结合剂研究与超硬磨具制备[学位论文]. 秦皇岛: 燕山大学, 2020
Liang S J. Study on Porous Metal Bond and Preparation of Super Hard Abrasive [Dissertation]. Qinhuangdao: Yanshan University, 2020
|
[17] |
余诺婷, 郭林硕, 鲍飞翔, 等. 铬–陶瓷复合结合剂的机械合金化制备工艺及性能研究. 金刚石与磨料磨具工程, 2019, 39(1): 31
Yu N T, Guo L S, Bao F X, et al. Study on property of chromium-ceramic composite bond and its preparing methods by mechanical alloying. Diamond Abras Eng, 2019, 39(1): 31
|
[18] |
谢育波. 金刚石磨具用陶瓷/铜基金属结合剂的制备与表征[学位论文]. 郑州: 河南工业大学, 2019
Xie Y B. Preparation and Characterization of Ceramic/Cu-Based Metal Bond for Diamond Abrasives [Dissertation]. Zhengzhou: Henan University of Technology, 2019
|
[19] |
王双喜, 刘雪敬, 耿彪, 等. 金属结合剂金刚石磨具的研究进展. 金刚石与磨料磨具工程, 2006(4): 71 DOI: 10.3969/j.issn.1006-852X.2006.04.021
Wang S X, Liu X J, Geng B, et al. Development of metal bonded diamond abrasive tools. Diamond Abras Eng, 2006(4): 71 DOI: 10.3969/j.issn.1006-852X.2006.04.021
|
1. |
李晓妍. 一种去毛刺整形工装的设计及受力分析. 冶金与材料. 2025(01): 32-34 .
![]() | |
2. |
位迎宾,于东林,王兴旺,王皓,山利媛. 铜含量对铁基粉末冶金复合材料密度分布的数值模拟. 冶金与材料. 2025(03): 4-6 .
![]() | |
3. |
马玲,徐岩,杜建华,韩明,邱倩,张楠,纪箴. 铁铜基粉末冶金材料制动工况下的摩擦磨损性能. 粉末冶金技术. 2024(04): 354-360 .
![]() | |
4. |
付传起,耿奥,丁亚东,汪滦. 石墨烯含量对铜铁基自润滑摩擦材料组织结构及摩擦性能的影响. 表面技术. 2024(15): 88-99 .
![]() | |
5. |
郑海飞,尹延国,李蓉蓉. FeS表面改性制备铁基轴承材料的摩擦学性能. 粉末冶金技术. 2024(05): 516-524 .
![]() | |
6. |
苏镇坚. 铜基粉末冶金材料摩擦界面自愈性能试验分析. 山西冶金. 2024(11): 41-43+118 .
![]() |