Citation: | YAO Jing, ZHANG Jiantao, LI Xingyi, LIU Zhongqiang, LIU Xiao, XIAO Zhiyu. Effect of ultrasonic surface rolling process on microstructure and properties of hydride sintered pure titanium[J]. Powder Metallurgy Technology, 2024, 42(6): 547-555. DOI: 10.19591/j.cnki.cn11-1974/tf.2022120009 |
Surface hardening of the pure titanium sintered by titanium hydride was treated by ultrasonic surface rolling process (USRP) in this paper, and the effects of USRP on the microstructure evolution and properties of the hydride sintered pure titanium were investigated by X-ray diffraction (XRD), electron back scattering diffraction (EBSD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results demonstrate that a gradient microstructure is present after USRP with the static load of 600 N, the outermost layer of the deformed microstructure displays the equiaxial nanocrystals, and the average grain size of the fine grains is about 100 nm. As the distance from the surface increases, the crystal structure shows the massive crystal, lamellar structure, and equiaxed coarse crystal in turn, and the average thickness of the deformation layer is about 400 μm. The surface roughness, grain refinement, and high surface compressive residual stress caused by rolling synergistically help to form a dense and stable passive film on the deformation layer, which could improve the corrosion resistance effectively. In addition, taking advantages of the microstructure evolution, the ultimate tensile strength and yield strength are 640.57 MPa and 485.29 MPa, increased by 32.43% and 27.57%, respectively. Meanwhile, the surface hardness is increased by 36% for the USRP treated titanium alloy. However, the introduction of deformation layer leads to a decrease of uniform elongation, while the fracture morphology indicates a ductile failure.
[1] |
何蕾. 钛合金在航空领域的市场展望. 金属世界, 2015(5): 4 DOI: 10.3969/j.issn.1000-6826.2015.05.02
He L. Market analysis of titanium alloy used in aviation field. Met World, 2015(5): 4 DOI: 10.3969/j.issn.1000-6826.2015.05.02
|
[2] |
John M, Ralls A M, Dooley S C, et al. Ultrasonic surface rolling process: properties, characterization, and applications. Appl Sci, 2021, 11(22): 10986 DOI: 10.3390/app112210986
|
[3] |
Hadadian A, Sedaghati R. Analysis and design optimization of double-sided deep cold rolling process of a Ti−6Al−4V blade. Int J Adv Manuf Technol, 2020, 108(7-8): 2103 DOI: 10.1007/s00170-020-05481-w
|
[4] |
Li X X, Zhu S J, Chen H M, et al. Effects of ultrasonic shot peening and multi-arc ion plating on microstructure and properties of TiAlN-coated cemented carbide materials. J Mater Eng Perform, 2022, 31(8): 6584 DOI: 10.1007/s11665-022-06740-5
|
[5] |
Azevedo L, Kashaev N, Horstmann C, et al. Fatigue behaviour of laser shock peened AISI D2 tool steel. Int J Fatigue, 2022, 165: 107226 DOI: 10.1016/j.ijfatigue.2022.107226
|
[6] |
Wei P B, Hua P, Xia M L, et al. Bending fatigue life enhancement of NiTi alloy by pre-strain warm surface mechanical attrition treatment. Acta Mater, 2022, 240: 118269 DOI: 10.1016/j.actamat.2022.118269
|
[7] |
张聪惠, 宋薇, 解钢, 等. 表面纳米化工业纯钛组织性能研究. 稀有金属, 2016, 40(10): 982
Zhang C H, Song W, Xie G, et al. Microstructure and properties of surface nanocrystallization CP-Ti. Chin J Rare Met, 2016, 40(10): 982
|
[8] |
Zhu L H, Guan Y J, Lin J, et al. A nanocrystalline-amorphous mixed layer obtained by ultrasonic shot peening on pure titanium at room temperature. Ultrason Sonochem, 2018, 47: 68 DOI: 10.1016/j.ultsonch.2018.04.017
|
[9] |
杨军永. 高能喷丸表面纳米化对工业纯钛疲劳性能的影响[学位论文]. 大连: 大连交通大学, 2006
Yang J Y. Effect of nanocrystallization in surface layer on fatigue strength of commercial pure titanium by high energy shot peening [Dissertation]. Dalian: Dalian Jiaotong University, 2006
|
[10] |
Liu Z Q, Wang Z, Gao C F, et al. Enhanced rolling contact fatigue behavior of selective electron beam melted Ti6Al4V using the ultrasonic surface rolling process. Mater Sci Eng A, 2022, 833: 142352 DOI: 10.1016/j.msea.2021.142352
|
[11] |
Ren Z J, Lai F Q, Qu S G, et al. Effect of ultrasonic surface rolling on surface layer properties and fretting wear properties of titanium alloy Ti5Al4Mo6V2Nb1Fe. Surf Coat Technol, 2020, 389: 125612 DOI: 10.1016/j.surfcoat.2020.125612
|
[12] |
李波, 孙清, 刘卓毅, 等. 超声滚压对7075铝合金耐腐蚀性能的影响. 中国表面工程, 2022, 35(1): 144 DOI: 10.11933/j.issn.1007-9289.20210325001
Li B, Sun Q, Liu Z Y, et al. Influence of ultrasonic rolling on corrosion resistance of 7075 aluminum alloy. China Surf Eng, 2022, 35(1): 144 DOI: 10.11933/j.issn.1007-9289.20210325001
|
[13] |
Luo X, Ren X P, Jin Q, et al. Microstructural evolution and surface integrity of ultrasonic surface rolling in Ti6Al4V alloy. J Mater Res Technol, 2021, 13: 1586 DOI: 10.1016/j.jmrt.2021.05.065
|
[14] |
Wang Z, Xiao Z Y, Huang C S, et al. Influence of ultrasonic surface rolling on microstructure and wear behavior of selective laser melted Ti−6Al−4V alloy. Materials, 2017, 10(10): 1203 DOI: 10.3390/ma10101203
|
[15] |
Jelliti S, Richard C, Retraint D, et al. Effect of surface nanocrystallization on the corrosion behavior of Ti−6Al−4V titanium alloy. Surf Coat Technol, 2013, 224: 82 DOI: 10.1016/j.surfcoat.2013.02.052
|
[16] |
Liu C S, Liu D X, Zhang X H. Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti−6Al−4V alloy. Materials, 2017, 10(7): 833 DOI: 10.3390/ma10070833
|
[17] |
Manna I, Chattopadhyay P P, Nandi P, et al. Formation of face-centered-cubic titanium by mechanical attrition. J Appl Phys, 2003, 93(3): 1520 DOI: 10.1063/1.1530718
|
[18] |
Zheng X D, Gong M Y, Xiong T, et al. Deformation induced FCC lamellae and their interaction in commercial pure Ti. Scr Mater, 2019, 162: 326 DOI: 10.1016/j.scriptamat.2018.11.037
|
[19] |
Hong D H, Lee T W, Lim S H, et al. Stress-induced hexagonal close-packed to face-centered cubic phase transformation in commercial-purity titanium under cryogenic plane-strain compression. Scr Mater, 2013, 69(5): 405 DOI: 10.1016/j.scriptamat.2013.05.038
|
[20] |
Chang C, Qian S F, Wang S, et al. The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature. Mater Charact, 2018, 136: 257 DOI: 10.1016/j.matchar.2017.12.031
|
[21] |
Lei L, Zhao Q Y, Zhao Y Q, et al. Gradient nanostructure, phase transformation, amorphization and enhanced strength-plasticity synergy of pure titanium manufactured by ultrasonic surface rolling. J Mater Process Technol, 2021, 299: 117322
|
[22] |
Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of a-titanium using SMAT. Acta Mater, 2004, 52(14): 4101 DOI: 10.1016/j.actamat.2004.05.023
|
[23] |
陈正阁, 武永丽, 薛全喜, 等. 激光冲击强化对片层TC11钛合金组织和性能的影响. 表面技术, 2022, 51(7): 343
Chen Z G, Wu Y L, Xue Q X, et al. Effect of laser shock peening on microstructure and properties of TC11 titanium alloy with lamellar microstructure. Surf Technol, 2022, 51(7): 343
|
[24] |
李慧敏, 李淼泉, 刘印刚, 等. 钛合金表层机械处理的纳米化组织、力学性能与机理研究进展. 中国有色金属学报, 2015, 25(3): 641
Li H M, Li M Q, Liu Y G, et al. Research progress in nanocrystalline microstructure, mechanical properties and nanocrystallization mechanism of titanium alloys via surface mechanical treatment. Chin J Nonferrous Met, 2015, 25(3): 641
|
1. |
鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .
![]() |