AdvancedSearch
REN Xueting, WANG Guangda, ZHOU Wuping, XIONG Ning. Effect of annealing temperature on La2O3 strengthened Mo–Re alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030007
Citation: REN Xueting, WANG Guangda, ZHOU Wuping, XIONG Ning. Effect of annealing temperature on La2O3 strengthened Mo–Re alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030007

Effect of annealing temperature on La2O3 strengthened Mo–Re alloys

More Information
  • Corresponding author:

    ZHOU Wuping, E-mail: zhouwuping@atmcn.com

  • Received Date: July 27, 2023
  • Accepted Date: July 27, 2023
  • Available Online: July 27, 2023
  • Molybdenum rhenium alloys are the solid solution strengthening alloys with high melting point and low expansion coefficient, and the addition of rare earth oxides can refine the grains and play a role in dispersion strengthening. Molybdenum−rhenium (Mo–Re) and molybdenum−rhenium−lanthanum (Mo–Re–La2O3) alloy plates were prepared by powder metallurgy and cross rolling method in this paper, and were annealed at different temperatures. The microstructure and room temperature tensile fracture morphology of the Mo–Re alloys and Mo–Re–La2O3 alloys annealed at different temperatures were observed by metallographic microscope and scanning electron microscope. The Vickers hardness and room temperature tensile properties of the two alloy plates were compared. The results show that the recrystallization temperature of Mo–Re alloys is about 1200 ℃, while that of the Mo–Re–La2O3 alloys is 1400 ℃. The addition of La2O3 increases the recrystallization temperature by about 200 ℃. With the increase of annealing temperature, the hardness and tensile strength of the Mo–Re alloys and Mo–Re–La2O3 alloys decrease significantly, while the elongation of Mo–Re–La2O3 alloys increases, up to 27.5%.

  • [1]
    杨慧玲. 钼在[BMP]Tf2N离子液体中的电沉积及其机理相关研究[学位论文]. 杭州: 浙江大学, 2017

    Yang H L. Research on the Electrodeposition of Molybdenum in [BMP]Tf2N Ionic Liquid and its Mechanism [Dissertation]. Hangzhou: Zhejiang University, 2017
    [2]
    曾毅, 孙院军, 安耿, 等. 核反应堆用钼铼合金结构材料研究进展. 粉末冶金技术, 2023, 41(4): 307

    Zeng Y, Sun Y J, An G, et al. Research progress of Mo−Re alloy structural materials used for nuclear reactors. Powder Metall Technol, 2023, 41(4): 307
    [3]
    陈闯. 自生Al2O3增强钼基复合材料的成形机理研究[学位论文]. 洛阳: 河南科技大学, 2013

    Chen C. Study on Forming Mechanism of Molybdenum Based Composites Reinforced by In-situ Al2O3 Particles [Dissertation]. Luoyang: Henan University of Science and Technology, 2013
    [4]
    李敏. 钼镧合金厚板材退火工艺对其热成形性影响研究. 中国钨业, 2018, 33(3): 41 DOI: 10.3969/j.issn.1009-0622.2018.03.008

    Li M. Effects of annealing process on thermal deep drawing of Mo‒La plate. China Tungsten Ind, 2018, 33(3): 41 DOI: 10.3969/j.issn.1009-0622.2018.03.008
    [5]
    付霄荧, 周增林, 李艳, 等. 退火温度对交叉轧制钼箔显微组织、织构及性能的影响. 稀有金属, 2020, 46(2): 137

    Fu X Y, Zhou Z L, Li Y, et al. Microstructure, texture and performance of cross-rolled molybdenum foil with different annealing temperatures. Chin J Rare Met, 2020, 46(2): 137
    [6]
    王林, 孙军, 孙院军, 等. 不同退火温度对Mo‒La2O3板材微观组织及力学性能的影响. 中国钼业, 2011, 35(5): 37 DOI: 10.3969/j.issn.1006-2602.2011.05.012

    Wang L, Sun J, Sun Y J, et al. Influence of annealing temperatures on microstructure and mechanical properties of Mo‒La2O3. China Molybd Ind, 2011, 35(5): 37 DOI: 10.3969/j.issn.1006-2602.2011.05.012
    [7]
    王广达, 熊宁, 唐亮亮, 等. 退火处理对钼铼合金箔材性能的影响. 中国钼业, 2019, 43(2): 41

    Wang G D, Xiong N, Tang L L, et al. Effect of heat treatment on the properties of Mo−Re alloy foils. China Molybd Ind, 2019, 43(2): 41
    [8]
    王承阳, 董帝, 滕宇阔, 等. 退火工艺对MHC钼合金板材组织和力学性能的影响. 金属热处理, 2018, 43(7): 180

    Wang C Y, Dong D, Teng Y K, et al. Effect of annealing on microstructure and mechanical properties of MHC molybdenum alloy sheet. Heat Treat Met, 2018, 43(7): 180
    [9]
    黄志民. 退火工艺对WTi10靶材组织及纯度的影响. 粉末冶金技术, 2021, 39(3): 274

    Huang Z M. Influence of annealing process on microstructure and purity of WTi10 target. Powder Metall Technol, 2021, 39(3): 274
    [10]
    李烨, 刘世锋, 王建忠, 等. 退火态Ti−6Al−3Nb−2Zr−1Mo钛合金的组织和力学性能. 粉末冶金技术, 2021, 39(4): 326

    Li Y, Liu S F, Wang J Z, et al. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys. Powder Metall Technol, 2021, 39(4): 326
    [11]
    王灿. MnS夹杂物对基体显微组织影响和损伤机理研究[学位论文]. 秦皇岛: 燕山大学, 2020

    Wang C. Investigation of MnS Inclusions on the Microstructure and Damage Mechanism of Matrix [Dissertation]. Qinhuangdao: Yanshan University, 2020
    [12]
    邓莉萍, 鲁世强, 林彦, 等. 高温退火对Laves相NbCr2合金性能的影响. 粉末冶金技术, 2014, 32(1): 48 DOI: 10.3969/j.issn.1001-3784.2014.01.009

    Deng L P, Lu S Q, Lin Y, et al. Effect of high-temperature annealing on properties of NbCr2 alloy. Powder Metall Technol, 2014, 32(1): 48 DOI: 10.3969/j.issn.1001-3784.2014.01.009
    [13]
    王林, 孙军, 刘刚, 等. La2O3含量及退火温度对钼合金晶粒尺寸及显微硬度的影响. 中国钼业, 2014, 38(2): 36

    Wang L, Sun J, Liu G, et al. Influence of the content of La2O3 and annealing temperature on grain size and microhardness of Mo alloys. China Molybd Ind, 2014, 38(2): 36
    [14]
    刘智恩. 材料科学基础. 2版. 西安: 西北工业大学出版社, 2003

    Liu Z N. Material Science. 2nd Ed. Xi'an: Northwest Industrial University Press, 2003
    [15]
    邱玺, 高士鑫, 李权, 等. 热管反应堆用钼铼合金的研究进展. 材料导报, 2023, 37(2): 97 DOI: 10.11896/cldb.21020011

    Qiu X, Gao S X, Li Q, et al. Research progress of molybdenum-rhenium alloys used in heat pipe reactor. Mater Rep, 2023, 37(2): 97 DOI: 10.11896/cldb.21020011
    [16]
    刘仁智, 安耿, 杨秦莉, 等. 钼‒铼‒镧合金微观组织及力学性能研究. 粉末冶金技术, 2018, 36(6): 429

    Liu R Z, An G, Yang Q L, et al. Microstructures and mechanical properties of Mo‒Re‒La alloy. Powder Metall Technol, 2018, 36(6): 429
    [17]
    黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251

    Huang H T, Wang W J, Gu W Y, et al. Research progress on application of Mo–Re alloy in space nuclear power. Atom Energy Sci Technol, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251
    [18]
    Mueller A J, Bianco R, Buckman R W, et al. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys. Int J Refract Met Hard Mater, 2000, 18(4-5): 205 DOI: 10.1016/S0263-4368(00)00028-7
    [19]
    Song W L, Xu L J, Li N, et al. Effect of zirconia on low cycle fatigue and energy absorption of molybdenum alloy. J Alloys Compd, 2021, 867: 159118 DOI: 10.1016/j.jallcom.2021.159118
    [20]
    姬耀鑫, 吴壮志, 王德志. 单向轧制纯钼板退火织构及其各向异性的研究. 中国钼业, 2020, 44(1): 37

    Ji Y X, Wu Z Z, Wang D Z. Annealing texture and anisotropy of pure molybdenum plate sobtained by unidirectional rolling. China Molybd Ind, 2020, 44(1): 37
    [21]
    刘杰, 李琳玲, 陈利. 退火工艺对钼板拉深性能影响规律研究. 金属加工(热加工), 2018(3): 51

    Liu J, Li L L, Chen L. Study on the influence of annealing process on the deep drawing performance of molybdenum plate. MW Met Form, 2018(3): 51
    [22]
    许忠国, 李来平, 汤慧萍. 退火温度对超细钼丝性能的影响. 中国材料进展, 2008, 27(2): 25

    Xu Z G, Li L P, Tang H P. Effect of annealing temperature on mechanical properties of superfine molybdenum wires. Mater China, 2008, 27(2): 25
    [23]
    杨益航, 王启东, 李保强, 等. WTi10合金的高温高压制备及相特征. 稀有金属材料与工程, 2021, 50(2): 664

    Yang Y H, Wang Q D, Li B Q, et al. High temperature and high pressure preparation and phase characterization of WTi10 alloy. Rare Met Mater Eng, 2021, 50(2): 664

Catalog

    Article Metrics

    Article views (437) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return