Citation: | WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015 |
Mo−Ni alloys were prepared by spark plasma sintering. The effects of sintering temperature, pressure, holding time, and heating rate on the relative density of Mo−Ni alloys were studied. The relative density, microstructure, and phase composition of Mo−Ni alloys were characterized by scanning electron microscope, X-ray diffraction, and electron back-scattered diffraction. The densification process of Mo−Ni alloys by spark plasma sintering was analyzed. The results show that, the sintering temperature and pressure are the main factors affecting the relative density of Mo−Ni alloys, the local high-speed diffusion of Mo and Ni is the main reason for promoting the densification of Mo−Ni alloys. The phases of sintered Mo−Ni alloys are mainly composed of Mo and Mo−Ni mesophases, and the Mo particles are evenly distributed in the network structure formed by Mo−Ni mesophases. The maximum relative density is 99.10%, the average grain size is less than 10 μm, and the average rockwell hardness value is HRA 72. The content of additive Ni does not change much before and after sintering.
[1] |
高陇桥. 陶瓷-金属封接质量和可靠性研究. 真空电子技术, 2003(4): 1
Gao L Q. Study of quality and reliability of ceramic-to-metal-seal. Vac Electron, 2003(4): 1
|
[2] |
高陇桥. 近期国外陶瓷-金属封接的技术进展. 真空电子技术, 2010(4): 47 DOI: 10.3969/j.issn.1002-8935.2010.04.011
Gao L Q. Some progress of recent ceramic to metal seal technology abroad. Vac Electron, 2010(4): 47 DOI: 10.3969/j.issn.1002-8935.2010.04.011
|
[3] |
高陇桥. 当前陶瓷-金属封接及其相关技术的新进展. 真空电子技术, 2000(5): 18
Gao L Q. Recent development of ceramic to metal seal and its relative technology. Vac Electron, 2000(5): 18
|
[4] |
任重, 杨磊, 梁田, 等. 钼镍铜合金在陶瓷-金属封接中的应用. 真空电子技术, 2017(5): 43
Ren Z, Yang L, Liang T, et al. The application of Mo−Ni−Cu alloy in ceramic-metal sealing. Vac Electron, 2017(5): 43
|
[5] |
张朝晖. 放电等离子烧结技术及其在钛基复合材料制备中的应用. 北京: 国防工业出版社, 2018
Zhang Z H. Spark Plasma Sintering of Ti Matrix Composites. Beijing: National Defense Industry Press, 2018
|
[6] |
赵东亮, 何庆, 朱在稳, 等. 放电等离子烧结制备细晶AlN陶瓷. 粉末冶金技术, 2024, 42(1): 29
Zhao D L, He Q, Zhu Z W, et al. Preparation of nanocrystalline AlN ceramics by spark plasma sintering. Powder Metall Technol, 2024, 42(1): 29
|
[7] |
张久兴, 刘科高, 王金淑, 等. 放电等离子烧结钼的组织和性能. 中国有色金属学报, 2001(5): 796
Zhang J X, Liu K G, Wang J S, et al. Microstructure and property of molybdenum prepared by spark plasma sintering. Chin J Nonferrous Met, 2001(5): 796
|
[8] |
韩杰胜, 吴有智, 孟军虎, 等. 放电等离子烧结制备MoNbTaW难溶高熵合金. 稀有金属材料与工程, 2019, 48(6): 2021
Han J S, Wu Y Z, Meng J H, et al. Preparation of MoNbTaW refractory high-entropy alloys by spark plasma sintering. Rare Met Mater Eng, 2019, 48(6): 2021
|
[9] |
徐志刚. 钨基合金的放电等离子烧结工艺及机理研究[学位论文]. 长沙: 中南大学, 2011
Xu Z G. Spark Plasma Sintering Process of Tungsten Base Alloy [Dissertation]. Changsha: Central South University, 2011
|
[10] |
卢姚, 杨栋林. SPS烧结制备高性能超细晶钼合金. 热加工工艺, 2021, 50(10): 39
Lu Y, Yang D L. High-performance ultra-fine grain Mo alloy prepared by SPS sintering. Hot Working Technol, 2021, 50(10): 39
|
[11] |
沈丹妮, 王超宁, 高鹏, 等. 放电等离子烧结制备超细晶钨钛合金. 粉末冶金技术, 2021, 39(2): 165
Shen D N, Wang C N, Gao P, et al. Ultrafine grained W−Ti alloys prepared by spark plasma sintering. Powder Metall Technol, 2021, 39(2): 165
|
[12] |
白玲, 葛昌纯, 沈卫平. 放电等离子烧结技术. 粉末冶金技术, 2007(3): 217
Bai L, Ge C C, Shen W P. Spark plasma sintering technology. Powder Metall Technol, 2007(3): 217
|
[13] |
张久兴, 刘科高, 周美玲. 放电等离子烧结技术的发展和应用. 粉末冶金技术, 2002(3): 11
Zhang J X, Liu K G, Zhou M L. Development and application of spark plasma sintering. Powder Metall Technol, 2002(3): 11
|
[14] |
武洲, 王娜, 吴吉娜, 等. 钼钨合金烧结致密化行为. 粉末冶金技术, 2021, 39(3): 234
Wu Z, Wang N, Wu J N, et al. Sintering densification behavior of molybdenum tungsten alloys. Powder Metall Technol, 2021, 39(3): 234
|
[15] |
韩翠柳, 沈学峰, 王衍, 等. 放电等离子烧结新技术新材料研究现状与发展趋势. 航空制造技术, 2019, 62(22): 43
Han C L, Shen X F, Wang Y, et al. Current situation and development trend of spark plasma sintering. Aviat Manuf Technol, 2019, 62(22): 43
|
[16] |
罗春兰. 活化烧结制备钨铜合金的组织及性能研究[学位论文]. 武汉: 华中科技大学, 2019
Luo C L. Investigations on Microstructure and Properties of Tungsten−Copper Alloys Prepared by Activated Sintering [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2019
|
[17] |
季必发, 田长安, 谢劲松. 国内放电等离子烧结新技术的研究进展及展望. 广东化工, 2013, 40(15): 85
Ji B F, Tian C A, Xie J S. Progress and trend of spark plasma sintering technology in China. Guangdong Chem Ind, 2013, 40(15): 85
|
[18] |
王士维, 陈立东, 平井敏雄, 等. 脉冲电流烧结机理的研究进展. 无机材料学报, 2001, 16(6): 1055
Wang S W, Chen L D, Ping J M X, et al. Recent development of pulse electric current sintering mechanism. J Inorg Mater, 2001, 16(6): 1055
|
[19] |
Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering. Mater Sci Forum, 1999, 308-311: 83 DOI: 10.4028/www.scientific.net/MSF.308-311.83
|
[20] |
冯晓伟, 司岸恒, 冯波, 等. W−Cu梯度复合材料的制备、组织与性能. 粉末冶金技术, 2024, 42(3): 283
Feng X W, Si A H, Feng B, et al. Fabrication, microstructure, and properties of W–Cu graded composites. Powder Metall Technol, 2024, 42(3): 283
|
[1] | DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013 |
[2] | YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009 |
[3] | Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011 |
[4] | Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116. |
[5] | Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272. |
[6] | Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219. |
[7] | Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43. |
[8] | Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171. |
[9] | Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15. |
[10] | Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15. |