AdvancedSearch
LÜ Shiya, KUANG Chunjiang, WANG Lei, CUI Lei, ZHANG Jun, CAO Rui. Preparation and properties of Fe−Si−B−Cr−C amorphous alloy powders by air-water combination atomization with different particle sizes[J]. Powder Metallurgy Technology, 2024, 42(6): 638-644. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080001
Citation: LÜ Shiya, KUANG Chunjiang, WANG Lei, CUI Lei, ZHANG Jun, CAO Rui. Preparation and properties of Fe−Si−B−Cr−C amorphous alloy powders by air-water combination atomization with different particle sizes[J]. Powder Metallurgy Technology, 2024, 42(6): 638-644. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080001

Preparation and properties of Fe−Si−B−Cr−C amorphous alloy powders by air-water combination atomization with different particle sizes

More Information
  • Corresponding author:

    LÜ Shiya, E-mail: lvshiya@atmcn.com

  • Received Date: August 02, 2023
  • Available Online: November 19, 2023
  • FeSiBCrC amorphous alloy powders with different particle sizes were prepared by a new industrial gas-water atomization, and the effects of particle size and annealing temperature on the properties of the FeSiBCrC amorphous magnetic cores were investigated in this paper. The results show that the FeSiBCrC alloy powders with the median particle size (D50) ≤25 μm are all amorphous, and the width of the supercooled liquid phase region (ΔT) can reach 40 ℃, indicating the strong amorphous formation ability of the FeSiBCrC alloy powders. The saturation magnetization (Ms) and coercivity (Hc) of the amorphous powders increase with the increase of particle size. D50=5 μm, Ms=144.6 emu∙g‒1, and Hc=1.8 Oe; however, D50=30 μm, Ms=152.6 emu∙g‒1, and Hc=9.8 Oe. The permeability (μe) of the amorphous magnetic cores with different particle sizes has the good stability in the frequency range of 0.1~600.0 kHz, and the permeability of fine powders show better than that of the coarse powders. The magnetic loss (Pc) of all amorphous magnetic cores increases with the increase of frequency. The finer the particle size, the more obvious the effect of annealing on reducing the magnetic loss, which is decreased by about 84% at D50=5 μm, while is only decreased by about 30% at D50=30 μm. After annealing at 500 ℃, the magnetic loss of amorphous magnetic cores at D50=5 μm reaches the minimum as 578 mW∙cm‒3.

  • [1]
    Makino A, Kubota T, Makabe M, et al. FeSiBP metallic glasses with high glass-forming ability and excellent magnetic properties. Mater Sci Eng B, 2008, 148(1): 166
    [2]
    Li Z Z, Wang A D, Chang C T, et al. FeSiBPNbCu alloys with high glass-forming ability and good soft magnetic properties. Intermetallics, 2014, 54: 225 DOI: 10.1016/j.intermet.2014.06.010
    [3]
    覃思思, 朱杰, 周晚珠, 等. 水雾化法制备的Fe‒Si‒B‒Nb(‒C)铁基非晶软磁合金粉末的性能. 磁性材料及器件, 2015, 46(5): 5

    Qin S S, Zhu J, Zhou W Z, et al. Properties of Fe‒Si‒B‒Nb(‒C) Fe-based soft-magnetic amorphous powders prepared by water-atomization. J Magn Mater Dev, 2015, 46(5): 5
    [4]
    刘涛, 孙会杰, 齐家伟. 非晶合金变压器铁心材料的安装优化设计. 电气传动自动化, 2021, 43(5): 53 DOI: 10.3969/j.issn.1005-7277.2021.05.015

    Liu T, Sun H J, Qi J W, et al. Installation optimization design of amorphous alloy transformer core material. J Elect Drive Autom, 2021, 43(5): 53 DOI: 10.3969/j.issn.1005-7277.2021.05.015
    [5]
    王晓雷, 柴欣, 赵倩, 等. 浅析非晶合金电抗器在电力系统中的新机遇. 电工文摘, 2017(3): 70

    Wang X L, Chai X, Zhao Q, et al. Analysis on the new opportunities of amorphous alloy reactor in power system. Elect Abstr, 2017(3): 70
    [6]
    陈啟炜. 非晶材料在小型电流互感器上的应用. 低电压器, 2013(18): 5

    Chen Q W, Application of amorphous material in miniature current transformer. Low-Voltage Electr Apparatus, 2013(18): 5
    [7]
    陈国钧, 牛永吉, 彭伟峰, 等. 高饱和磁通密度Fe基非晶软磁合金研究进展. 磁性材料及器件, 2011, 42(5): 4 DOI: 10.3969/j.issn.1001-3830.2011.05.002

    Chen G J, Niu Y J, Peng W F, et al. Advances in high Bs Fe-based amorphous soft magnetic alloys. J Magn Mater Dev, 2011, 42(5): 4 DOI: 10.3969/j.issn.1001-3830.2011.05.002
    [8]
    王湘粤, 卢志超, 陆曹卫, 等. 低损耗FeSiBPC非晶磁粉芯的制备及磁性能研究. 粉末冶金工业, 2013, 23(1): 37 DOI: 10.3969/j.issn.1006-6543.2013.01.008

    Wang X Y, Lu Z C, Peng W F, et al. Fabrication and magnetic properties of FeSiBPC amorphous powder cores with ultra-low core loss. Powder Metall Ind, 2013, 23(1): 37 DOI: 10.3969/j.issn.1006-6543.2013.01.008
    [9]
    Hibino T, Bitoh T. Ternary Fe‒B‒C and quaternary Fe‒B‒C‒Si amorphous alloys with glass transition and high magnetization. J Alloys Compd, 2017, 707(7): 82
    [10]
    高铭, 张于顺, 柏忠卫, 等. 铁基非晶纳米晶磁粉芯制备工艺研究进展. 铸造技术, 2020, 41(9): 891

    Gao M, Zhang Y S, Bai Z W, et al. Research progress in preparation technology of Fe-based amorphous nanocrystalline magnetic powder cores. Foundry Technol, 2020, 41(9): 891
    [11]
    刘佳奇, 庞靖, 王璞, 等. 液态金属雾化成形及非晶合金制粉的研究进展. 中国冶金, 2022, 32(2): 1

    Liu J Q, Pang J, Wang P, et al. Research progress of liquid metal atomization technology and preparation of its amorphous powders. China Metall, 2022, 32(2): 1
    [12]
    Zhao T C, Chen C G, Wu X J, et al. FeSiBCrC amorphous magnetic powder fabricated by gas-water combined atomization. J Alloys Compd, 2020, 857(15): 157991
    [13]
    刘坤杰, 乐晨, 赵放, 等. 水气联合雾化制备的Fe72Si10.7B10.7Cr2.2P1.5C2.9非晶粉末的结构及软磁性能. 磁性材料及器件, 2018, 49(6): 10

    Liu K J, Yue C, Zhao F, et al. The microstructure and soft magnetic properties of Fe72Si10.7B10.7Cr2.2P1.5C2.9 magnetic powders produced by water-gas atomization. J Magn Mater Dev, 2018, 49(6): 10
    [14]
    Mazaleyrat F, Leger V, Lebourgeois R, et al. Permeability of soft magnetic composites from flakes of nanocrystalline ribbon. IEEE Trans Magn, 2002, 38(5): 3132
    [15]
    Taghvaei A H, Shokrollahi H, Janghorban K, et al. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites. Mater Des, 2009, 30(10): 3989 DOI: 10.1016/j.matdes.2009.05.026

Catalog

    Article Metrics

    Article views (649) PDF downloads (67) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return