Citation: | LÜ Shiya, KUANG Chunjiang, WANG Lei, CUI Lei, ZHANG Jun, CAO Rui. Preparation and properties of Fe−Si−B−Cr−C amorphous alloy powders by air-water combination atomization with different particle sizes[J]. Powder Metallurgy Technology, 2024, 42(6): 638-644. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080001 |
FeSiBCrC amorphous alloy powders with different particle sizes were prepared by a new industrial gas-water atomization, and the effects of particle size and annealing temperature on the properties of the FeSiBCrC amorphous magnetic cores were investigated in this paper. The results show that the FeSiBCrC alloy powders with the median particle size (D50) ≤25 μm are all amorphous, and the width of the supercooled liquid phase region (ΔT) can reach 40 ℃, indicating the strong amorphous formation ability of the FeSiBCrC alloy powders. The saturation magnetization (Ms) and coercivity (Hc) of the amorphous powders increase with the increase of particle size. D50=5 μm, Ms=144.6 emu∙g‒1, and Hc=1.8 Oe; however, D50=30 μm, Ms=152.6 emu∙g‒1, and Hc=9.8 Oe. The permeability (μe) of the amorphous magnetic cores with different particle sizes has the good stability in the frequency range of 0.1~600.0 kHz, and the permeability of fine powders show better than that of the coarse powders. The magnetic loss (Pc) of all amorphous magnetic cores increases with the increase of frequency. The finer the particle size, the more obvious the effect of annealing on reducing the magnetic loss, which is decreased by about 84% at D50=5 μm, while is only decreased by about 30% at D50=30 μm. After annealing at 500 ℃, the magnetic loss of amorphous magnetic cores at D50=5 μm reaches the minimum as 578 mW∙cm‒3.
[1] |
Makino A, Kubota T, Makabe M, et al. FeSiBP metallic glasses with high glass-forming ability and excellent magnetic properties. Mater Sci Eng B, 2008, 148(1): 166
|
[2] |
Li Z Z, Wang A D, Chang C T, et al. FeSiBPNbCu alloys with high glass-forming ability and good soft magnetic properties. Intermetallics, 2014, 54: 225 DOI: 10.1016/j.intermet.2014.06.010
|
[3] |
覃思思, 朱杰, 周晚珠, 等. 水雾化法制备的Fe‒Si‒B‒Nb(‒C)铁基非晶软磁合金粉末的性能. 磁性材料及器件, 2015, 46(5): 5
Qin S S, Zhu J, Zhou W Z, et al. Properties of Fe‒Si‒B‒Nb(‒C) Fe-based soft-magnetic amorphous powders prepared by water-atomization. J Magn Mater Dev, 2015, 46(5): 5
|
[4] |
刘涛, 孙会杰, 齐家伟. 非晶合金变压器铁心材料的安装优化设计. 电气传动自动化, 2021, 43(5): 53 DOI: 10.3969/j.issn.1005-7277.2021.05.015
Liu T, Sun H J, Qi J W, et al. Installation optimization design of amorphous alloy transformer core material. J Elect Drive Autom, 2021, 43(5): 53 DOI: 10.3969/j.issn.1005-7277.2021.05.015
|
[5] |
王晓雷, 柴欣, 赵倩, 等. 浅析非晶合金电抗器在电力系统中的新机遇. 电工文摘, 2017(3): 70
Wang X L, Chai X, Zhao Q, et al. Analysis on the new opportunities of amorphous alloy reactor in power system. Elect Abstr, 2017(3): 70
|
[6] |
陈啟炜. 非晶材料在小型电流互感器上的应用. 低电压器, 2013(18): 5
Chen Q W, Application of amorphous material in miniature current transformer. Low-Voltage Electr Apparatus, 2013(18): 5
|
[7] |
陈国钧, 牛永吉, 彭伟峰, 等. 高饱和磁通密度Fe基非晶软磁合金研究进展. 磁性材料及器件, 2011, 42(5): 4 DOI: 10.3969/j.issn.1001-3830.2011.05.002
Chen G J, Niu Y J, Peng W F, et al. Advances in high Bs Fe-based amorphous soft magnetic alloys. J Magn Mater Dev, 2011, 42(5): 4 DOI: 10.3969/j.issn.1001-3830.2011.05.002
|
[8] |
王湘粤, 卢志超, 陆曹卫, 等. 低损耗FeSiBPC非晶磁粉芯的制备及磁性能研究. 粉末冶金工业, 2013, 23(1): 37 DOI: 10.3969/j.issn.1006-6543.2013.01.008
Wang X Y, Lu Z C, Peng W F, et al. Fabrication and magnetic properties of FeSiBPC amorphous powder cores with ultra-low core loss. Powder Metall Ind, 2013, 23(1): 37 DOI: 10.3969/j.issn.1006-6543.2013.01.008
|
[9] |
Hibino T, Bitoh T. Ternary Fe‒B‒C and quaternary Fe‒B‒C‒Si amorphous alloys with glass transition and high magnetization. J Alloys Compd, 2017, 707(7): 82
|
[10] |
高铭, 张于顺, 柏忠卫, 等. 铁基非晶纳米晶磁粉芯制备工艺研究进展. 铸造技术, 2020, 41(9): 891
Gao M, Zhang Y S, Bai Z W, et al. Research progress in preparation technology of Fe-based amorphous nanocrystalline magnetic powder cores. Foundry Technol, 2020, 41(9): 891
|
[11] |
刘佳奇, 庞靖, 王璞, 等. 液态金属雾化成形及非晶合金制粉的研究进展. 中国冶金, 2022, 32(2): 1
Liu J Q, Pang J, Wang P, et al. Research progress of liquid metal atomization technology and preparation of its amorphous powders. China Metall, 2022, 32(2): 1
|
[12] |
Zhao T C, Chen C G, Wu X J, et al. FeSiBCrC amorphous magnetic powder fabricated by gas-water combined atomization. J Alloys Compd, 2020, 857(15): 157991
|
[13] |
刘坤杰, 乐晨, 赵放, 等. 水气联合雾化制备的Fe72Si10.7B10.7Cr2.2P1.5C2.9非晶粉末的结构及软磁性能. 磁性材料及器件, 2018, 49(6): 10
Liu K J, Yue C, Zhao F, et al. The microstructure and soft magnetic properties of Fe72Si10.7B10.7Cr2.2P1.5C2.9 magnetic powders produced by water-gas atomization. J Magn Mater Dev, 2018, 49(6): 10
|
[14] |
Mazaleyrat F, Leger V, Lebourgeois R, et al. Permeability of soft magnetic composites from flakes of nanocrystalline ribbon. IEEE Trans Magn, 2002, 38(5): 3132
|
[15] |
Taghvaei A H, Shokrollahi H, Janghorban K, et al. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites. Mater Des, 2009, 30(10): 3989 DOI: 10.1016/j.matdes.2009.05.026
|
[1] | YANG Guang, LI Gemin, WEI Bangzheng, XU Dang, CHEN Pengqi, CHENG Jigui. Preparation and sintering behavior of ultrafine Cu–20W composite powders by sol–gel with hydrogen reduction technology[J]. Powder Metallurgy Technology, 2025, 43(1): 12-19. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050001 |
[2] | ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010010 |
[3] | La Peiqing, Han Shaobo, Lu Xuefeng, Ju Qian, Wei Yupeng. Study of the influence of different stoichometry of Mg in starting mixture on particle size and purity of ZrB2 powder prepared by combustion synthesis[J]. Powder Metallurgy Technology, 2013, 31(1): 3-8,13. DOI: 10.3969/j.issn.1001-3784.2013.01.001 |
[4] | Tian Ding, Zhao Yanmin, Wu Xiaolin, Wang Xiuhui, Gao Hong, Zhai Yuchun. The preparation techniques of lanthanum aluminate ultra-fine powders[J]. Powder Metallurgy Technology, 2009, 27(5): 377-380. |
[5] | Sun Weimin, Jin Shouri, Yu Ying. PREPARATION AND CHARACTERIZATION OF Ni-TiN ULTRAFINE POWDER[J]. Powder Metallurgy Technology, 2000, 18(3): 183-186. |
[6] | Sun Weimin, Jin Shouri. Continuous Production of Ultrafine Iron Powder[J]. Powder Metallurgy Technology, 1997, 15(3): 199-202. |
[7] | Zheng Jie, Lü Zhenhe, Gan Zhangyan. DEVELOPMENT TO SUPERIOR QUALITY ULTRAFINE PALLADIUM POWDER[J]. Powder Metallurgy Technology, 1995, 13(2): 112-115. |
[8] | Zhong Junhui. MANUFACTURE PROCESS OF NANOMETER POWDER[J]. Powder Metallurgy Technology, 1995, 13(1): 48-56. |
[9] | Ge Rongde, Zhao Tiancong, Liu Zhihong, Chen Huiguang, Zhang Duomo. APPLICATION OF A NEW AGGLOMERATION PARAMETER IN CHARACTERIZING THE STATE OF AGGLOMERATION OF ULTRAFINE ZIRCONIA POWDERS[J]. Powder Metallurgy Technology, 1994, 12(2): 87-90. |
[10] | Xu Mingxia, Guo Ruisong, Yang Zhengfang, Shi Guoshun. SURFACE MODIFICATION OF ULTRAFINE CERAMIC POWDERS[J]. Powder Metallurgy Technology, 1993, 11(1): 19-24. |
1. |
荣智峥,高阳,张朔,马佳俊,孙德建. 球磨时间及热处理工艺对6061铝合金组织与性能的影响. 材料工程. 2023(10): 136-145 .
![]() | |
2. |
韩国强,王玮玮,李晓艳. 粉末烧结对Mg-Sc合金微观组织和力学性能的影响. 粉末冶金技术. 2023(06): 548-553 .
![]() | |
3. |
余聪,陈乐平,周全. 稀土元素对铝合金组织与性能影响的研究进展. 特种铸造及有色合金. 2021(02): 241-246 .
![]() | |
4. |
郭江,李荣,牛海云. 铈对6063铝合金组织和综合性能的影响. 中国稀土学报. 2021(02): 275-281 .
![]() |