AdvancedSearch
SHI Jianhui, QUAN Qiwei, LIU Zhengping, LIU Xiangbing, WU Huanchun, XU Chaoliang, MENG Xinming, QI Shuang. Irradiation hardening of Fe ions in additive manufacturing 316 stainless steels[J]. Powder Metallurgy Technology, 2025, 43(1): 116-122. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080009
Citation: SHI Jianhui, QUAN Qiwei, LIU Zhengping, LIU Xiangbing, WU Huanchun, XU Chaoliang, MENG Xinming, QI Shuang. Irradiation hardening of Fe ions in additive manufacturing 316 stainless steels[J]. Powder Metallurgy Technology, 2025, 43(1): 116-122. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080009

Irradiation hardening of Fe ions in additive manufacturing 316 stainless steels

More Information
  • Corresponding author:

    QUAN Qiwei, E-mail: 409623526@qq.com

  • Received Date: August 14, 2023
  • Available Online: October 20, 2023
  • The 316 stainless steels were fabricated by selective laser melting (SLM) additive manufacturing and compared to the traditionally manufactured counterparts. The microstructure and performance of the traditionally manufacturing and additive manufacturing 316 stainless steels were characterized by metallographic microscopy, scanning electron microscopy, X-ray diffraction, and Vickers hardness testing. To investigate the irradiation-induced hardening effects, these two 316 stainless steels were irradiated by 3.5 MeV Fe ions at room temperature. The results indicate that the additive manufacturing 316 stainless steels show the columnar crystal structure with the single austenite γ phase, accompanied by the high-density subgrain-like cell wall structure, and the hardness exhibits the anisotropy between the scanning and deposition planes. Irradiation hardening effects are observed on two types of 316 stainless steels after Fe ions irradiation, and the hardening rate of the 316 stainless steels produced by additive manufacturing is found to be lower than that of the traditionally manufactured steels, but it also shows the anisotropy of irradiation hardening in the additive manufacturing steels.

  • [1]
    Nguyen Q B, Zhu Z, Ng F L, et al. High mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting. J Mater Sci Technol, 2019, 35(2): 388 DOI: 10.1016/j.jmst.2018.10.013
    [2]
    Sutton A T, Kriewall C S, Leu M C, et al. Characterization of laser spatter and condensate generated during the selective laser melting of 304L stainless steel powder. Addit Manuf, 2020, 31: 100904
    [3]
    朱学超, 魏青松, 孙春华. 激光选区熔化成形S136模具钢热处理组织和性能研究. 粉末冶金技术, 2019, 37(2): 83

    Zhu X C, Wei Q S, Sun C H. Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment. Powder Metall Technol, 2019, 37(2): 83
    [4]
    马青原, 杜沛南, 彭英博, 等. 金属增材制造技术在核工业领域的应用与发展. 粉末冶金技术, 2022, 40(1): 86

    Ma Q Y, Du P N, Peng Y B, et al. Application and development of metal additive manufacturing technology in the field of nuclear industry. Powder Metall Technol, 2022, 40(1): 86
    [5]
    王磊, 卢秉恒. 我国增材制造技术与产业发展研究. 中国工程科学, 2022, 24(4): 202 DOI: 10.15302/J-SSCAE-2022.04.018

    Wang L, Lu B H. Development of additive manufacturing technology and industry in China. Strat Study CAE, 2022, 24(4): 202 DOI: 10.15302/J-SSCAE-2022.04.018
    [6]
    谭磊, 赵建光. 金属3D打印技术核电领域研究现状及应用前景分析. 电焊机, 2019, 49(4): 339

    Tan L, Zhao J G. Analysis on the present research situation and application prospect of metal 3D printing technology in nuclear power field. Electron Weld Mach, 2019, 49(4): 339
    [7]
    邓平, 彭群家, 韩恩厚, 等. 国产核用不锈钢辐照损伤研究. 金属学报, 2017, 53(12): 1588

    Deng P, Peng Q J, Han E H, et al. Study of irradiation damage in domestically fabricated nuclear grade stainless steel. Acta Metall Sin, 2017, 53(12): 1588
    [8]
    Song M, Wang M, Lou X Y, et al. Radiation damage and irradiation-assisted stress corrosion cracking of additively manufactured 316L stainless steels. J Nucl Mater, 2019, 513: 33 DOI: 10.1016/j.jnucmat.2018.10.044
    [9]
    Hou J, Dai B B, Li Y, et al. Helium bubble nucleation in laser powder bed fusion processed 304L stainless steel. J Nucl Mater, 2020, 542: 152443 DOI: 10.1016/j.jnucmat.2020.152443
    [10]
    李莹, 李健健, 付崇龙, 等. 选区激光熔化成形的304L不锈钢的Xe离子辐照损伤研究. 核技术, 2021, 44(7): 11 DOI: 10.11889/j.0253-3219.2021.hjs.44.070201

    Li Y, Li J J, Fu C L, et al. Damage characteristics of selective laser melted 304L stainless steel under Xe ion irradiation. Nucl Tech, 2021, 44(7): 11 DOI: 10.11889/j.0253-3219.2021.hjs.44.070201
    [11]
    Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature, 2019, 576(7785): 91 DOI: 10.1038/s41586-019-1783-1
    [12]
    Saeidi K, Gao X, Zhong Y, et al. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A, 2015, 625: 221 DOI: 10.1016/j.msea.2014.12.018
    [13]
    孙翔宇. 选区激光熔化成形316L不锈钢的离子辐照损伤效应研究[学位论文]. 南京: 南京航空航天大学, 2019

    Sun X Y. Ions Radiation Damage Effect of 316L Stainless Steels Fabricated by Selective Laser Melting [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019
    [14]
    周鑫. 激光选区熔化微尺度熔池特性与凝固微观组织[学位论文]. 北京: 清华大学, 2016

    Zhou X. Research on Micro-Scale Melt Pool Characteristics and Solidified Microstructures in Selective Laser Melting [Dissertation]. Beijing: Tsinghua University, 2016
    [15]
    Lou X Y, Andresen P L, Rebak R B. Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior. J Nucl Mater, 2018, 499: 182 DOI: 10.1016/j.jnucmat.2017.11.036
    [16]
    Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol, 2017, 249: 255 DOI: 10.1016/j.jmatprotec.2017.05.042
    [17]
    Pharr G M, Herbert E G, Gao Y F. The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu Rev Mater Res, 2010, 40: 271 DOI: 10.1146/annurev-matsci-070909-104456
    [18]
    付崇龙, 李健健, 白菊菊, 等. 增材制造316L不锈钢辐照硬化行为的温度效应研究. 核技术, 2022, 45(9): 27 DOI: 10.11889/j.0253-3219.2022.hjs.45.090203

    Fu C L, Li J J, Bai J J, et al. Temperature effect of irradiation hardening behavior of 316L stainless steel by additive manufacturing. Nucl Technol, 2022, 45(9): 27 DOI: 10.11889/j.0253-3219.2022.hjs.45.090203
  • Related Articles

    [1]M.C.Baran, A.H.Graham, A.B.Davala, R.J.Causton, C.Schade. A auperior sinter-hardenable material[J]. Powder Metallurgy Technology, 2016, 34(2): 141-148. DOI: 10.3969/j.issn.1001-3784.2016.02.012
    [2]Jia Jixiang, Liao Xiangwei, Li Degang, Guo Qingtao, Ni Chongyi, Peng Chunlin. Study on the Properties of Fe-Mo-Ni-Cu-C Sinter Hardening Steel[J]. Powder Metallurgy Technology, 2014, 32(6): 451-456.
    [3]Effect of Cooling Rates During Sinter-Hardening[J]. Powder Metallurgy Technology, 2014, 32(2): 144-152.
    [4]Properties and applications of high density sinter-hardening materials[J]. Powder Metallurgy Technology, 2014, 32(1): 68-73. DOI: 10.3969/j.issn.1001-3784.2014.01.013
    [5]Alloy development of sinter-hardenable compositions[J]. Powder Metallurgy Technology, 2011, 29(3): 232-235.
    [6]Bruce Lindsley, Thomas Murphy. Dimensional precision in sinter-hardening PM steels[J]. Powder Metallurgy Technology, 2009, 27(6): 468-470.
    [7]Development of a dual-phase precipitation-hardening PM stainless steel[J]. Powder Metallurgy Technology, 2009, 27(4): 305-312.
    [8]A review of current sinter-hardening technology[J]. Powder Metallurgy Technology, 2009, 27(2): 148-152.
    [9]Study on the effects of the power and raw material on nanodiamond synthesis by laser irradiation[J]. Powder Metallurgy Technology, 2007, 25(3): 203-208. DOI: 10.3321/j.issn:1001-3784.2007.03.010
    [10]Transfer case sprocket production through the sinter hardening process[J]. Powder Metallurgy Technology, 2003, 21(6): 327-333. DOI: 10.3321/j.issn:1001-3784.2003.06.002

Catalog

    Article Metrics

    Article views (482) PDF downloads (27) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return