Citation: | YIN Yi, QIN Sigui, SHI Yingli, YU Hongxin, XU Shiwei. Research progress on thermal load damage behavior of tungsten-based plasma facing materials[J]. Powder Metallurgy Technology, 2024, 42(3): 242-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110008 |
During the operation of nuclear fusion reactors, the plasma facing tungsten-based materials need to withstand a certain number of steady-state and transient thermal loads without cracking, melting, and other damage. It is very important to improve the mechanical properties and high temperature stability of plasma facing tungsten-based materials, the current modification methods mainly include alloy strengthening, dispersion strengthening, fiber toughening, second phase strengthening, composite strengthening, and so on. The effect of modification methods on the thermal load damage behavior of tungsten-based materials was investigated in this paper, such as alloy strengthening and dispersion strengthening, the advantages and disadvantages of those strengthening methods were summarized, and the thermal load damage behavior of plasma facing tungsten-based materials was prospected.
[1] |
Villari R, Barabash V, Escourbiac F, et al. Nuclear analysis of the ITER full-tungsten divertor. Fusion Eng Des, 2013, 88(9-10): 2006 DOI: 10.1016/j.fusengdes.2013.02.156
|
[2] |
Hirai T, Escourbiac F, Carpentier-Chouchana S, et al. ITER tungsten divertor design development and qualification program. Fusion Eng Des, 2013, 88(9-10): 1798 DOI: 10.1016/j.fusengdes.2013.05.010
|
[3] |
Rieth M, Doerner R, Hasegawa A, et al. Behavior of tungsten under irradiation and plasma interaction. J Nucl Mater, 2019, 519: 334 DOI: 10.1016/j.jnucmat.2019.03.035
|
[4] |
Gonderman S, Tripathi J K, Novakowski T J, et al. Effect of dual ion beam irradiation (helium and deuterium) on tungsten–tantalum alloys under fusion relevant conditions. Nucl Mater Energy, 2017, 12: 346 DOI: 10.1016/j.nme.2017.02.011
|
[5] |
Katoh Y, Snead L L, Garrison L M, et al. Response of unalloyed tungsten to mixed spectrum neutrons. J Nucl Mater, 2019, 520: 193 DOI: 10.1016/j.jnucmat.2019.03.045
|
[6] |
Wurster S, Baluc N, Battabyal M, et al. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J Nucl Mater, 2013, 442(1-3): S181 DOI: 10.1016/j.jnucmat.2013.02.074
|
[7] |
Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten. J Nucl Mater, 2003, 323(2-3): 304 DOI: 10.1016/j.jnucmat.2003.08.009
|
[8] |
Giannattasio A, Tanaka M, Joseph T D, et al. An empirical correlation between temperature and activation energy for brittle-to-ductile transitions in single-phase materials. Phys Scr, 2007, T128: 87 DOI: 10.1088/0031-8949/2007/T128/017
|
[9] |
Rupp D, Weygand S M. Anisotropic fracture behaviour and brittle-to-ductile transition of polycrystalline tungsten. Philos Mag, 2010, 90(30): 4055 DOI: 10.1080/14786435.2010.504198
|
[10] |
Gaganidze E, Rupp D, Aktaa J. Fracture behaviour of polycrystalline tungsten. J Nucl Mater, 2014, 446(1-3): 240 DOI: 10.1016/j.jnucmat.2013.11.001
|
[11] |
Babak A V. Effect of recrystallization on the fracture toughness of tungsten. Sov Powder Metall Met Ceram, 1983, 22(4): 316 DOI: 10.1007/BF00795612
|
[12] |
Steichen J M. Tensile properties of neutron irradiated TZM and tungsten. J Nucl Mater, 1976, 60(1): 13 DOI: 10.1016/0022-3115(76)90112-4
|
[13] |
Hasegawa A, Fukuda M, Nogami S, et al. Neutron irradiation effects on tungsten materials. Fusion Eng Des, 2014, 89(7-8): 1568 DOI: 10.1016/j.fusengdes.2014.04.035
|
[14] |
Yuan Y, Du J, Wirtz M, et al. Surface damage and structure evolution of recrystallized tungsten exposed to ELM-like transient loads. Nucl Fusion, 2016, 56(3): 036021 DOI: 10.1088/0029-5515/56/3/036021
|
[15] |
Li Y, Morgan T W, Van Dommelen J A W, et al. Fracture behavior of tungsten-based composites exposed to steady-state/transient hydrogen plasma. Nucl Fusion, 2020, 60(4): 046029 DOI: 10.1088/1741-4326/ab77e7
|
[16] |
Loewenhoff Th, Hirai T, Keusemann S, et al. Experimental simulation of edge localised modes using focused electron beams-features of a circular load pattern. J Nucl Mater, 2011, 415(Suppl 1): S51
|
[17] |
Hassanein A, Sizyuk T, Ulrickson M. Vertical displacement events: A serious concern in future ITER operation. Fusion Eng Des, 2008, 83(7-9): 1020 DOI: 10.1016/j.fusengdes.2008.05.032
|
[18] |
Merola M, Vieider G, Bet M, et al. European achievements for ITER high heat flux components. Fusion Eng Des, 2001, 56-57: 173 DOI: 10.1016/S0920-3796(01)00253-8
|
[19] |
Yin C, Terentyev D, Pardoen T, et al. Ductile to brittle transition in ITER specification tungsten assessed by combined fracture toughness and bending tests analysis. Mater Sci Eng A, 2019, 750: 20 DOI: 10.1016/j.msea.2019.02.028
|
[20] |
罗来马, 颜硕, 刘祯, 等. 面向等离子体材料用先进钨复合材料的改性研究进展与趋势. 粉末冶金技术, 2023, 41(1): 12
Luo L M, Yan S, Liu Z, et al. Research progress and trend of advanced tungsten composite modification use for plasma facing materials. Powder Metall Technol, 2023, 41(1): 12
|
[21] |
Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures. J Mater Sci, 1995, 30(3): 770 DOI: 10.1007/BF00356341
|
[22] |
Zayachuk Y, Hoen M H J, Zeijlmans van Emmichoven P A, et al. Surface modification of tungsten and tungsten–tantalum alloys exposed to high-flux deuterium plasma and its impact on deuterium retention. Nucl Fusion, 2013, 53(1): 013013 DOI: 10.1088/0029-5515/53/1/013013
|
[23] |
Arshad K, Zhao M Y, Yuan Y, et al. Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys. J Nucl Mater, 2014, 455(1-3): 96 DOI: 10.1016/j.jnucmat.2014.04.019
|
[24] |
Arshad K, Ding D, Wang J, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads. Nucl Mater Energy, 2015, 3-4: 32 DOI: 10.1016/j.nme.2015.05.001
|
[25] |
沈丹妮, 王超宁, 高鹏, 等. 放电等离子烧结制备超细晶钨钛合金. 粉末冶金技术, 2021, 39(2): 165
Shen D N, Wang C N, Gao P, et al. Preparation of ultra-fine-grained tungsten titanium alloy by sintering with discharge plasma. Powder Metall Technol, 2021, 39(2): 165
|
[26] |
Schmid K, Rieger V, Manhard A. Comparison of hydrogen retention in W and W/Ta alloys. J Nucl Mater, 2012, 426(1-3): 247 DOI: 10.1016/j.jnucmat.2012.04.003
|
[27] |
Wurster S, Gludovatz B, Pippan R. High temperature fracture experiments on tungsten–rhenium alloys. Int J Refract Met Hard Mater, 2010, 28(6): 692 DOI: 10.1016/j.ijrmhm.2010.03.002
|
[28] |
Romaner L, Ambrosch-Draxl C, Pippan R. Effect of rhenium on the dislocation core structure in tungsten. Phys Rev Lett, 2010, 104(19): 195503 DOI: 10.1103/PhysRevLett.104.195503
|
[29] |
Luo A, Jacobson D L, Shin K S. Solution softening mechanism of iridium and rhenium in tungsten at room temperature. Int J Refract Met Hard Mater, 1991, 10(2): 107 DOI: 10.1016/0263-4368(91)90028-M
|
[30] |
Hu Y J, Fellinger M R, Butler B G, et al. Solute-induced solid-solution softening and hardening in bcc tungsten. Acta Mater, 2017, 141: 304 DOI: 10.1016/j.actamat.2017.09.019
|
[31] |
Li H, Wurster S, Motz C, et al. Dislocation-core symmetry and slip planes in tungsten alloys: Ab initio calculations and microcantilever bending experiments. Acta Mater, 2012, 60(2): 748 DOI: 10.1016/j.actamat.2011.10.031
|
[32] |
Siller M, Schatte J, Gerzoskovitz S, et al. Microstructural evolution of W–10Re alloys due to thermal cycling at high temperatures and its impact on surface degradation. Int J Refract Met Hard Mater, 2020, 92: 105285 DOI: 10.1016/j.ijrmhm.2020.105285
|
[33] |
Nogami S, Pintsuk G, Matsui K, et al. Thermal shock behavior of potassium doped and rhenium added tungsten alloys. Phys Scr, 2020, T171: 014020 DOI: 10.1088/1402-4896/ab3dcc
|
[34] |
Fukuda M, Hasegawa A, Nogami S. Thermal properties of pure tungsten and its alloys for fusion applications. Fusion Eng Des, 2018, 132: 1 DOI: 10.1016/j.fusengdes.2018.04.117
|
[35] |
Tanabe T, Eamchotchawalit C, Busabok C, et al. Temperature dependence of thermal conductivity in W and W–Re alloys from 300 to 1000 K. Mater Lett, 2003, 57(19): 2950 DOI: 10.1016/S0167-577X(02)01403-9
|
[36] |
Lloyd M J, Haley J, Jim B, et al. Microstructural evolution and transmutation in tungsten under ion and neutron irradiation. Materialia, 2023: 101991
|
[37] |
Akiyoshi M, Garrison L M, Geringer J W, et al. Thermal diffusivity of irradiated tungsten and tungsten-rhenium alloys. J Nucl Mater, 2021, 543: 152594 DOI: 10.1016/j.jnucmat.2020.152594
|
[38] |
Williams R K, Wiffen F W, Bentley J, et al. Irradiation induced precipitation in tungsten based, W–Re alloys. Metall Trans A, 1983, 14: 655 DOI: 10.1007/BF02643781
|
[39] |
Srivastav A K, Bandi S, Kumar A, et al. Microstructure evolution and densification during spark plasma sintering of nanocrystalline W-5wt.%Ta alloy. Philos Mag Lett, 2020, 100(9): 442 DOI: 10.1080/09500839.2020.1793010
|
[40] |
Rieth M, Reister J, Dafferner B, et al. The Impact of refractory material properties on the helium cooled divertor design. Fusion Sci Technol, 2012, 61: 381 DOI: 10.13182/FST12-1T3
|
[41] |
Wurster S, Gludovatz B, Hoffmann A, et al. Fracture behaviour of tungsten–vanadium and tungsten–tantalum alloys and composites. J Nucl Mater, 2011, 413(3): 166 DOI: 10.1016/j.jnucmat.2011.04.025
|
[42] |
Tejado E, Carvalho P A, Munoz A, et al. The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applications. J Nucl Mater, 2015, 467: 949 DOI: 10.1016/j.jnucmat.2015.10.034
|
[43] |
Linsmeier Ch, Rieth M, Aktaa J, et al. Development of advanced high heat flux and plasma-facing materials. Nucl Fusion, 2017, 57(9): 092007 DOI: 10.1088/1741-4326/aa6f71
|
[44] |
Nogami S, Ozawa I, Asami D, et al. Tungsten–tantalum alloys for fusion reactor applications. J Nucl Mater, 2022, 566: 153740 DOI: 10.1016/j.jnucmat.2022.153740
|
[45] |
Nogami S, Wirtz M, Lied P, et al. Thermal shock behavior under deuterium plasma exposure of tungsten–tantalum alloys. Phys Scr, 2021, 96(11): 114011 DOI: 10.1088/1402-4896/ac1702
|
[46] |
Sayir A. Carbon fiber reinforced hafnium carbide composite. J Mater Sci, 2004, 39(19): 5995 DOI: 10.1023/B:JMSC.0000041696.64055.8c
|
[47] |
Wang Y L, Xiong X, Li G D, et al. Microstructure and ablation behavior of hafnium carbide coating for carbon/carbon composites. Surf Coat Technol, 2012, 206(11-12): 2825 DOI: 10.1016/j.surfcoat.2011.12.001
|
[48] |
Kurishita H, Kobayashi S, Nakai K, et al. Current status of ultra-fine grained W–TiC development for use in irradiation environments. Phys Scr, 2007, T128: 76 DOI: 10.1088/0031-8949/2007/T128/015
|
[49] |
Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement. Mater Trans, 2013, 54(4): 456 DOI: 10.2320/matertrans.MG201209
|
[50] |
Tokunaga K, Kurishita H, Arakawa H, et al. High heat load properties of nanostructured, recrystallized W–1.1TiC. J Nucl Mater, 2013, 442(1-3): S297 DOI: 10.1016/j.jnucmat.2013.04.094
|
[51] |
Liu R, Xie Z M, Hao T, et al. Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening. J Nucl Mater, 2014, 451(1-3): 35 DOI: 10.1016/j.jnucmat.2014.03.029
|
[52] |
Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W–ZrC alloy plate at relatively low temperature. Sci Rep, 2015, 5(1): 16014 DOI: 10.1038/srep16014
|
[53] |
Xie Z M, Liu R, Miao S, et al. High thermal shock resistance of the hot rolled and swaged bulk W–ZrC alloys. J Nucl Mater, 2016, 469: 209 DOI: 10.1016/j.jnucmat.2015.10.052
|
[54] |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater, 2013, 12(4): 344 DOI: 10.1038/nmat3544
|
[55] |
Wang M M, Xie Z M, Deng H W, et al. Thermal shock fatigue behaviors of various W-0.5wt%ZrC materials under repetitive transient heat loads. J Nucl Mater, 2020, 534: 152152
|
[56] |
Wang H, Xie Z M, Cheng X, et al. Microstructural evolution and thermal fatigue damage mechanism of second-phase dispersion strengthened tungsten composites under repetitive thermal loads. J Mater Sci Technol, 2023, 140: 221 DOI: 10.1016/j.jmst.2022.09.007
|
[57] |
Zhao M, Zhou Z, Zhong M, et al. Thermal shock behavior of fine grained W–Y2O3 materials fabricated via two different manufacturing technologies. J Nucl Mater, 2016, 470: 236 DOI: 10.1016/j.jnucmat.2015.12.042
|
[58] |
Zinkle S J. Radiation effects in refractory alloys // AIP Conference Proceedings. Albuquerque, 2004: 733
|
[59] |
Yin C, Terentyev D, Zhang T, et al. Impact of neutron irradiation on the strength and ductility of pure and ZrC reinforced tungsten grades. J Nucl Mater, 2020, 537: 152226 DOI: 10.1016/j.jnucmat.2020.152226
|
[60] |
Lü Y, Han Y, Zhao S, et al. Nano-in-situ-composite ultrafine-grained W–Y2O3 materials: Microstructure, mechanical properties and high heat load performances. J Alloys Compd, 2021, 855: 157366 DOI: 10.1016/j.jallcom.2020.157366
|
[61] |
Wang C, Huang H, Wei S, et al. Strengthening mechanism and effect of Al2O3 particle on high-temperature tensile properties and microstructure evolution of W–Al2O3 alloys. Mater Sci Eng A, 2022, 835: 142678 DOI: 10.1016/j.msea.2022.142678
|
[62] |
Yao G, Tan X Y, Luo L M, et al. Surface damage evolution during transient thermal shock of W–2%vol Y2O3 composite material in different surfaces. Fusion Eng Des, 2019, 139: 86 DOI: 10.1016/j.fusengdes.2019.01.010
|
[63] |
Ren D Y, Xi Y, Yan J, et al. Surface damage and microstructure evolution of yttria particle-reinforced tungsten plate during transient laser thermal shock. Metals, 2022, 12(4): 686 DOI: 10.3390/met12040686
|
[64] |
Wei Q, Kecskes L J. Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten. Mater Sci Eng A, 2008, 491(1-2): 62 DOI: 10.1016/j.msea.2008.01.013
|
[65] |
Ganeev A V, Islamgaliev R K, Valiev R Z. Refinement of tungsten microstructure upon severe plastic deformation. Phys Met Metall, 2014, 115(2): 139 DOI: 10.1134/S0031918X14020070
|
[66] |
Xie Z M, Liu R, Miao S, et al. Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W–Y2O3. J Nucl Mater, 2015, 464: 193 DOI: 10.1016/j.jnucmat.2015.04.050
|
[67] |
Shen T, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures. J Nucl Mater, 2016, 468: 348 DOI: 10.1016/j.jnucmat.2015.09.057
|
[68] |
He C Y, Feng F, Wang J B, et al. Improving the mechanical properties and thermal shock resistance of W–Y2O3 composites by two-step high-energy-rate forging. Int J Refract Met Hard Mater, 2022, 107: 105883 DOI: 10.1016/j.ijrmhm.2022.105883
|
[69] |
Wei M Y, Feng F, Wang J, et al. Room temperature ductile W-Y2O3 alloy with high thermal shock resistance. Int J Refract Met Hard Mater, 2023, 114: 106261 DOI: 10.1016/j.ijrmhm.2023.106261
|
[70] |
Chen Z, Qin M, Yang J, et al. Thermal stability and grain growth kinetics of ultrafine-grained w with various amount of La2O3 addition. Metall Mater Trans A, 2020, 51(8): 4113 DOI: 10.1007/s11661-020-05836-8
|
[71] |
Chen Z, Yang J, Zhang L, et al. Effect of La2O3 content on the densification, microstructure and mechanical property of W–La2O3 alloy via pressureless sintering. Mater Charact, 2021, 175: 111092 DOI: 10.1016/j.matchar.2021.111092
|
[72] |
Sun Y, Wang S, Li C, et al. Dependence of deuterium retention and surface blistering on deuterium plasma exposure temperature and fluence in lanthanum oxide doped tungsten. Nucl Mater Energy, 2022, 32: 101217 DOI: 10.1016/j.nme.2022.101217
|
[73] |
Kanpara S, Khirwadkar S, Belsare S, et al. Fabrication of tungsten & tungsten alloy and its high heat load testing for fusion applications. Materialstoday Proceed, 2016, 3(9): 3055
|
[74] |
Zhang X, Yan Q. Morphology evolution of La2O3 and crack characteristic in W–La2O3 alloy under transient heat loading. J Nucl Mater, 2014, 451(1-3): 283 DOI: 10.1016/j.jnucmat.2014.04.001
|
[75] |
Zhang X, Gong Z, Huang J, et al. Thermal shock resistance of tungsten with various deformation degrees under transient high heat flux. Mater Res Express, 2020, 7(6): 066503 DOI: 10.1088/2053-1591/ab9689
|
[76] |
Huang B, Chen L Q, Qiu W B, et al. Correlation between the microstructure, mechanical/thermal properties, and thermal shock resistance of K-doped tungsten alloys. J Nucl Mater, 2019, 520: 6 DOI: 10.1016/j.jnucmat.2019.03.056
|
[77] |
Ma X, Feng F, Zhang X, et al. Effect of potassium bubbles on the thermal shock fatigue behavior of large-volume potassium-doped tungsten alloy. Nucl Fusion, 2022, 62(12): 126062 DOI: 10.1088/1741-4326/ac9a5b
|
[78] |
Xie Z M, Miao S, Liu R, et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices. J Nucl Mater, 2017, 496: 41 DOI: 10.1016/j.jnucmat.2017.09.022
|
[79] |
Wang Y, Yan Q. Preparation of hot-rolled potassium doped tungsten (KW) thick plate and performance of KW–Cu monoblock mock-ups under high heat flux testing. Nucl Mater Energy, 2020, 23: 100744 DOI: 10.1016/j.nme.2020.100744
|
[80] |
Pintsuk G, Kurishita H, Linke J, et al. Thermal shock response of fine- and ultra-fine-grained tungsten-based materials. Phys Scr, 2011, T145: 014060 DOI: 10.1088/0031-8949/2011/T145/014060
|
[81] |
Ding X Y, Luo L M, Lu Z L, et al. Chemically produced tungsten–praseodymium oxide composite sintered by spark plasma sintering. J Nucl Mater, 2014, 454(1-3): 200 DOI: 10.1016/j.jnucmat.2014.07.048
|