Citation: | WANG Guangda, XIONG Ning, KUANG Chunjiang. Effect of oxide doping on mechanical properties of molybdenum‒rhenium alloy plates[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110013 |
The La2O3 and ZrO2 were doped in the molybdenum‒rhenium alloys, the effects of oxide doping on the relative density of the sintered billets and the mechanical properties of the final rolled plates at room temperature were studied in this paper. The results show that, the doped oxide can significantly reduce the particle size of the alloy powders. The grain size of molybdenum‒rhenium alloys doped with ZrO2 is the smallest, but the relative density of the sintered billets is reduced due to the crystalline phase transformation. The rolling deformation can improve the hardness and strength of the alloy plates, the molybdenum‒rhenium alloys doped with La2O3 can obtain the higher strength with the plasticity almost unchanged, while the molybdenum‒rhenium alloys doped with ZrO2 show the increase of strength but the decrease of plasticity. The tensile strength and yield strength of the molybdenum‒rhenium alloys doped with ZrO2 are the highest, which are
[1] |
张强, 蔡永丰, 李晓静, 等. 钼合金粉末冶金研究进展. 粉末冶金技术, 2023, 41(1): 44
Zhang Q, Cai Y F, Li X J, et al. Research progress of molybdenum alloys prepared by powder metallurgy. Powder Metall Technol, 2023, 41(1): 44
|
[2] |
刘刚, 张国君, 江峰, 等. 高性能钼合金的微观组织设计制备与性能优化. 中国材料进展, 2016, 35(3): 205
Liu G, Zhang G J, Jiang F, et al. Microstructural design and property optimization of Mo alloys with high performance. Mater China, 2016, 35(3): 205
|
[3] |
陈闯, 魏世忠, 张国赏, 等. 钼合金的研究现状与应用进展. 稀有金属与硬质合金, 2012, 40(5): 45
Chen C, Wei S Z, Zhang G S, et al. Current research and application development of molybdenum alloy. Rare Met Cement Carb, 2012, 40(5): 45
|
[4] |
王宾, 周玉成, 徐流杰, 等. 氧化物颗粒增强钼合金研究进展. 特种铸造及有色合金, 2022, 42(9): 1102
Wang B, Zhou Y C, Xu L J, et al. Research progress in oxide particle reinforced molybdenum alloys. Spec Cast Nonferrous Alloys, 2022, 42(9): 1102
|
[5] |
Xu L J, Sun T L, Zhou Y C, et al. Evaluation of tensile property and strengthening mechanism of molybdenum alloy bars doped with different ultrafine oxides. Trans Nonferrous Met Soc China, 2023, 33(10): 3083 DOI: 10.1016/S1003-6326(23)66319-8
|
[6] |
Mueller A J, Bianco R, Buckman R W. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum–rhenium alloys. Int J Refract Met Hard Mater, 2000, 18(4-5): 205 DOI: 10.1016/S0263-4368(00)00028-7
|
[7] |
刘仁智, 安耿, 杨秦莉, 等. 钼-铼-镧合金微观组织及力学性能研究. 粉末冶金技术, 2018, 36(6): 429
Liu R Z, An G, Yang Q L, et al. Microstructures and mechanical properties of Mo‒Re‒La alloy. Powder Metall Technol, 2018, 36(6): 429
|
[8] |
王承阳, 常洋, 张林海, 等. 氧化锆含量对钼合金组织和性能的影响. 粉末冶金技术, 2021, 39(5): 429
Wang C Y, Chang Y, Zhang L H, et al. Effect of ZrO2 content on microstructure and properties of molybdenum alloys. Powder Metall Technol, 2021, 39(5): 429
|
[9] |
Leonhardt T, Carlén J C, Buck M, et al. Investigation of mechanical properties and microstructure of various molybdenum‒rhenium alloys // Space Technology and Applications International Forum. Albuquerque, 1999: 685
|
[10] |
Leichtfried G, Schneibel J H, Heilmaier M. Ductility and impact resistance of powder-metallurgical molybdenum‒rhenium alloys. Metall Mater Trans A, 2006, 37: 2955 DOI: 10.1007/s11661-006-0177-9
|
[11] |
Ring P J, Sayre E D. Material requirements, selection and development for the proposed JIMO space power system // AIP Conference Proceedings. Albuquerque, 2004: 806
|
[12] |
El-Genk M S, Tournier J M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. J Nucl Mater, 2005, 340(1): 93 DOI: 10.1016/j.jnucmat.2004.10.118
|
[13] |
黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251
Huang H T, Wang W J, Zhong W Y, et al. Research progress on application of Mo‒Re alloy in space nuclear power. At Energy Sci Technol, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251
|
[14] |
邱玺, 高士鑫, 李权, 等. 热管反应堆用钼铼合金的研究进展. 材料导报, 2023, 37(2): 101 DOI: 10.11896/cldb.21020011
Qiu X, Gao S X, Li Q, et al. Research progress of molybdenum‒rhenium alloys used in heat pipe reactor. Mater Rep, 2023, 37(2): 101 DOI: 10.11896/cldb.21020011
|
[15] |
曾毅, 孙院军, 安耿, 等. 核反应堆用钼铼合金结构材料研究进展. 粉末冶金技术, 2023, 41(4): 307
Zeng Y, Sun Y J, An G, et al. Research progress of Mo−Re alloy structural materials used for nuclear reactors. Powder Metall Technol, 2023, 41(4): 307
|
[16] |
Lundberg L B. LA-8685-MS Critical Evaluation of Molybdenum and its Alloys for Use in Space Reactor Core Heat Pipes. Los Alamos: Los Alamos Scientific Laboratory, 1981
|
[17] |
董帝, 王承阳. 钼合金制备工艺的研究进展. 粉末冶金技术, 2017, 35(4): 304
Dong D, Wang C Y. Research progress on preparation technology of molybdenum alloy. Powder Metall Technol, 2017, 35(4): 304
|
[18] |
王广达, 熊宁, 唐亮亮, 等. 退火处理对钼铼合金箔材性能的影响. 中国钼业, 2019, 43(2): 41
Wang G D, Xiong N, Tang L L, et al. Effect of heat treatment on the properties of Mo‒Re alloy foils. China Molybdenum Ind, 2019, 43(2): 41
|
[19] |
陈畅, 汪明朴, 谭望, 等. 粉末冶金方法制备钼铼合金的研究. 材料导报, 2008(5): 74 DOI: 10.3321/j.issn:1005-023X.2008.05.018
Chen C, Wang M P, Tan W, et al. Study on preparation of molybdenum‒rhenium alloys by powder metallurgy methods. Mater Rev, 2008(5): 74 DOI: 10.3321/j.issn:1005-023X.2008.05.018
|
[20] |
宋万里, 徐流杰, 尚清毅, 等. 不同氧化物掺杂钼合金粉末的形貌变化. 稀有金属与硬质合金, 2021, 49(1): 40
Song W L, Xu L J, Shang Q Y, et al. Morphology changes of molybdenum alloy powders doped with different oxides. Rare Met Cement Carb, 2021, 49(1): 40
|
[21] |
李锴, 王德志, 吴壮志, 等. 高能球磨活化钼粉的低温致密化. 中国有色金属学报, 2021, 31(9): 2447 DOI: 10.11817/j.ysxb.1004.0609.2021-36701
Li K, Wang D Z, Wu Z Z, et al. Low-temperature densification of molybdenum powder activated by high-energy ball milling. Trans Nonferrous Met Soc China, 2021, 31(9): 2447 DOI: 10.11817/j.ysxb.1004.0609.2021-36701
|
[22] |
仙彬华. La2O3对钼烧结坯力学性能的影响. 有色金属加工, 2006(5): 18 DOI: 10.3969/j.issn.1671-6795.2006.05.005
Xian B H. Influence of lanthanum oxide on mechanical property of sintered molybdenum alloy. Nonferrous Met Process, 2006(5): 18 DOI: 10.3969/j.issn.1671-6795.2006.05.005
|
[23] |
沈思奇, 陈杉杉, 方毅金, 等. 不同镧含量对钼镧合金烧结致密性的影响. 中国钼业, 2020, 44(1): 54
Shen S Q, Chen S S, Fang Y J, et al. Effect of different lanthanum content on the sintering density of MoLa alloy. China Molybdenum Ind, 2020, 44(1): 54
|
[24] |
张晓, 卜春阳, 武州, 等. 氧化锆对钼金属组织和性能的影响. 中国钼业, 2017, 41(4): 46
Zhang X, Bu C Y, Wu Z, et al. Effect of ZrO3 addition on microstructure and properties of molybdenum metal. China Molybdenum Ind, 2017, 41(4): 46
|
[25] |
Yan S X, Sun G D, Xu J P, et al. In-situ oxide dispersion strengthened ultrafine-grained molybdenum alloy with enhanced hardness and bending strength. Mater Today Commun, 2023, 35: 105
|
[26] |
王林, 孙军, 刘刚, 等. La2O3含量及退火温度对钼合金晶粒尺寸及显微硬度的影响. 中国钼业, 2014, 38(2): 36
Wang L, Sun J, Liu G, et al. Influence of the content of La2O3 and annealing temperature on the grain size and microhardness of Mo alloys. China Molybdenum Ind, 2014, 38(2): 36
|
[27] |
淡新国, 范文博, 张清, 等. 固-固掺杂钼镧合金板材性能研究. 中国钼业, 2019, 43(1): 49
Dan X G, Fan W B, Zhang Q, et al. Microstructure and properties of solid-solid doped molybdenum lanthanum alloy plates. China Molybdenum Ind, 2019, 43(1): 49
|
[28] |
罗建海, 王林, 孙院军. 掺杂方式对Mo‒La2O3合金断裂韧性及掺杂粒子显微结构的影响. 中国钼业, 2015, 39(5): 54
Luo J H, Wang L, Sun Y J, et al. Influence of doping ways on fracture toughness of Mo‒La2O3 alloy and doped particle microstructure. China Molybdenum Ind, 2015, 39(5): 54
|
[29] |
Cui C P, Zhu X W, Liu S L, et al. Effect of nano-sized ZrO2 on the recrystallization of Mo alloy. J Alloys Compd, 2018, 752: 308 DOI: 10.1016/j.jallcom.2018.04.155
|