Citation: | DUAN Limei, WANG Zhiyi, HUANG Qiqi, XIE Liang, HU Fengyun, ZHONG Yi, YANG Zhenliang, LI Bingqing, XU Jingkun, WANG Mingshan, GAO Rui, CHU Mingfu. Preparation and high temperature thermal conductivity of UO2/SiC fully ceramic microencapsulated pellets[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110016 |
A series of UO2/SiC composite fully ceramic microencapsulated (FCM) pellets were prepared by self-grinding spheroidization coating and spark plasma sintering. The parameters, such as heating rate, sintering temperature, sintering pressure, and SiC content, were regulated. The phase composition and structural characteristics of the pellets were observed by metallographic microscopy and scanning electron microscopy. The thermal conductivity (TC) of the pellets from room temperature to
[1] |
高瑞, 杨振亮, 李冰清, 等. 二氧化铀基事故容错燃料芯块研究进展. 中国材料进展, 2019, 38(1): 58 DOI: 10.7502/j.issn.1674-3962.2019.01.07
Gao R, Yang Z L, Li B Q, et al. Research progress of uranium dioxide based accident tolerant fuel. Mater China, 2019, 38(1): 58 DOI: 10.7502/j.issn.1674-3962.2019.01.07
|
[2] |
张翔, 潘小强, 陆永洪, 等. 耐事故燃料芯块的制备方法与研究进展. 粉末冶金技术, 2022, 40(4): 334
Zhang X, Pan X Q, Lu Y H, et al. Preparation and research progress of accident tolerant fuel pellets. Powder Metall Technol, 2022, 40(4): 334
|
[3] |
Yang Z, Li B, Zhang P, et al. Microstructure and thermal physical properties of SiC matrix microencapsulated composites at temperature up to 1900 ℃. Ceram Int, 2020, 46(4): 5159 DOI: 10.1016/j.ceramint.2019.10.260
|
[4] |
Terrani K A, Kiggans J O, Katoh Y, et al. Fabrication and characterization of fully ceramic microencapsulated fuels. J Nucl Mater, 2012, 426(1): 268
|
[5] |
Chun J H, Lim S W, Chung B D, et al. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs. Nucl Eng Des, 2015, 289: 287 DOI: 10.1016/j.nucengdes.2015.04.021
|
[6] |
Shapiro R A, Fratoni M. Assembly design of pressurized water reactors with fully ceramic microencapsulated fuel. Nucl Technol, 2016, 194: 15 DOI: 10.13182/NT15-97
|
[7] |
秦雪, 李满仓, 廖鸿宽, 等. 基于FCM燃料的商业压水堆中子学分析. 核技术, 2020, 43(8): 47 DOI: 10.11889/j.0253-3219.2020.hjs.43.080007
Qin X, Li M C, Liao H K, et al. Neutronics analysis of commercial pressurized water reactor loaded with FCM fuel. Nucl Tech, 2020, 43(8): 47 DOI: 10.11889/j.0253-3219.2020.hjs.43.080007
|
[8] |
Al-Zahrani Y A, Mehboob K, Mohamad D, et al. Neutronic performance of fully ceramic microencapsulated of uranium oxycarbide and uranium nitride composite fuel in SMR. Ann Nucl Energy, 2021, 155: 108152 DOI: 10.1016/j.anucene.2021.108152
|
[9] |
尹邦跃, 吴学志, 屈哲昊, 等. 亚化学计量UO2− x燃料芯块的制备机理. 原子能科学技术, 2011, 45(2): 206 DOI: 10.7538/yzk.2011.45.02.0206
Yin B Y, Wu X Z, Qu Z H, et al. Fabrication mechanisms of hypostichiometric UO2− x fuel pellets. At Energy Sci Technol, 2011, 45(2): 206 DOI: 10.7538/yzk.2011.45.02.0206
|
[10] |
Engberg C J, Zehms E H. Thermal expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC above 1000 ℃. J Am Ceram Soc, 1959, 42(6): 300 DOI: 10.1111/j.1151-2916.1959.tb12958.x
|
[11] |
Fink J K. Thermophysical properties of uranium dioxide. J Nucl Mater, 2000, 279(1): 1 DOI: 10.1016/S0022-3115(99)00273-1
|
[12] |
Silva C M, Katoh Y, Voit S L, et al. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures. J Nucl Mater, 2015, 460: 52 DOI: 10.1016/j.jnucmat.2015.02.002
|
[13] |
Braun J, Guéneau C, Alpettaz T, et al. Chemical compatibility between UO2 fuel and SiC cladding for LWRs. Application to ATF (Accident-Tolerant Fuels). J Nucl Mater, 2017, 487: 380
|
[14] |
Dell R M, Wheeler V J, McIver E J. Oxidation of uranium mononitride and uranium monocarbide. Trans Faraday Soc, 1966, 62: 3591 DOI: 10.1039/tf9666203591
|
[15] |
Paljević M, Despotović Z. Oxidation of uranium mononitride. J Nucl Mater, 1975, 57(3): 253 DOI: 10.1016/0022-3115(75)90208-1
|
[16] |
Li B, Yang Z, Jia J, et al. High temperature thermal physical performance of SiC/UO2 composites up to 1600 ℃. Ceram Int, 2018, 44(9): 10069 DOI: 10.1016/j.ceramint.2018.02.208
|
[17] |
张秀玲, 陈宇红, 戚武彬, 等. 无压烧结SiC-金刚石多晶材料致密化及物理性能研究. 粉末冶金技术, 2024, 42(2): 165
Zhang X L, Chen H Y, Qi W B, et al. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering. Powder Metall Technol, 2024, 42(2): 165
|
[18] |
Snead L L, Nozawa T, Katoh Y, et al. Handbook of SiC properties for fuel performance modeling. J Nucl Mater, 2007, 371(1-3): 329 DOI: 10.1016/j.jnucmat.2007.05.016
|