Citation: | DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013 |
The WC–xVC composite powders were synthesized by two-step carbothermal reduction process, and the WC–Co–VC cemented carbides with different mass fraction of Co (6% and 10%) were prepared by vacuum sintering method using the WC–xVC composite powders as the raw materials. The effect of sintering temperature (
[1] |
娄鹤子, 王海滨, 刘雪梅, 等. WC–Co硬质合金摩擦磨损行为的分子动力学模拟. 粉末冶金技术, 2022, 40(5): 471
Lou H Z, Wang H B, Liu X M, et al. Molecular dynamics simulation on friction and wear behavior of WC–Co cemented carbides. Powder Metall Technol, 2022, 40(5): 471
|
[2] |
Wei C B, Song X Y, Fu J, et al. Effect of carbon addition on microstructure and properties of WC–Co cemented carbides. J Mater Sci Technol, 2012, 28(9): 837 DOI: 10.1016/S1005-0302(12)60140-6
|
[3] |
Leal E A D, Gomes U U, Alves S M, et al. The influence of powder preparation condition on densification and microstructural properties of WC–Co–Al2O3 cermets. Int J Refract Met Hard Mater, 2020, 92(1): 105275
|
[4] |
Gao Y, Yan M Y, Luo B H, et al. Effects of NbC additions on the microstructure and properties of non-uniform structure WC–Co cemented carbides. Mater Sci Eng A, 2017, 687(27): 259
|
[5] |
Peng Y, Wang H B, Zhao C, et al. Nanocrystalline WC–Co composite with ultrahigh hardness and toughness. Composites Part B, 2020, 197(15): 108161
|
[6] |
Sun L, Yang T E, Jia C C, et al. VC, Cr3C2 doped ultrafine WC–Co cemented carbides prepared by spark plasma sintering. Int J Refract Met Hard Mater, 2011, 29(2): 147 DOI: 10.1016/j.ijrmhm.2010.09.004
|
[7] |
Cha S I, Hong S H, Ha G H, et al. Mechanical properties of WC–10Co cemented carbides sintered from nanocrystalline spray conversion processed powders. Int J Refract Met Hard Mater, 2001, 19(4): 397
|
[8] |
Cai H, Jing W W, Guo S D, et al. Effects of micro/nano CeO2 on the microstructure and properties of WC–10Co cemented carbides. Int J Refract Met Hard Mater, 2021, 95(1): 105432
|
[9] |
Li J F, Cheng J G, Wei B Z, et al. Preparation and performance of ultrafine grained WC–10Co alloys with added La2O3. Ceram Int, 2019, 45(3): 3969 DOI: 10.1016/j.ceramint.2018.11.071
|
[10] |
Yang Y, Luo L M, Zan X, et al. Synthesis of Y2O3-doped WC–Co powders by wet chemical method and its effect on the properties of WC–Co cemented carbide alloy. Int J Refract Met Hard Mater, 2020, 92(1): 105324
|
[11] |
Deng X C, Wang K F, Zhang G H. Effects of oxide addition on structure and properties of WC–10Co cemented carbide obtained by in situ synthesized powder. Int J Appl Ceram Technol, 2022, 19(4): 1916 DOI: 10.1111/ijac.14058
|
[12] |
Guo S D, Yan W, Yi J H, et al. The optimization of mechanical property and corrosion resistance of WC–6Co cemented carbide by Mo2C content. Ceram Int, 2020, 46(11): 17243 DOI: 10.1016/j.ceramint.2020.04.011
|
[13] |
Luo R, Chen N, Xiong H W, et al. Microhomogeneous WC–TiC–Co composite powders with enhanced sinterability via a two-step carburization method. Int J Refract Met Hard Mater, 2021, 95(1): 105413
|
[14] |
Wu C C, Chang S H, Tang T P, et al. Study on the properties of WC–10Co alloys adding Cr3C2 powder via various vacuum sintering temperatures. J Alloys Compd, 2016, 686(25): 810
|
[15] |
Okada K, Osada A. Microstructural study on the grain growth inhibition of VC-doped WC–Co cemented carbides. Int J Refract Met Hard Mater, 2017, 62: 149 DOI: 10.1016/j.ijrmhm.2016.06.009
|
[16] |
Wang B X, Wang Z H, Yin Z B, et al. Preparation and properties of the VC/Cr3C2/TaC doped ultrafine WC–Co tool material by spark plasma sintering. J Alloys Compd, 2020, 816(5): 152598
|
[17] |
Fazili A, Nikzad L, Rahimipour M R, et al. Effect of Al2O3 ceramic binder on mechanical and microstructure properties of spark plasma sintered WC–Co cermets. Int J Refract Met Hard Mater, 2017, 69: 189 DOI: 10.1016/j.ijrmhm.2017.08.010
|
[18] |
Schubert W D, Neumeister H, Kinger G, et al. Hardness to toughness relationship of fine-grained hardmetals. Int J Refract Met Hard Mater, 1998, 16(2): 133 DOI: 10.1016/S0263-4368(98)00028-6
|
[19] |
Acharya S, Debata M, Acharya T S, et al. Influence of nickel boride addition on sintering behaviour and mechanical properties of TiC–Ni based cermets. J Alloys Compd, 2016, 685(15): 905
|
[20] |
Li N, Qiu Y X, Zhang W. Influence and function of inhibitor VC/Cr3C2 on the grain growth in super fine WC–Co cermets. Rare Met Mater Eng, 2007, 36(10): 1763
|
[21] |
Choi K, Hwang N M, Kim D Y. Effect of VC addition on microstructural evolution of WC–Co alloy: mechanism of grain growth inhibition. Powder Metall, 2013, 43(2): 168
|
[22] |
Huang S G, Vleugelsa J, Li L, et al. Experimental investigation and thermodynamic assessment of the V–W–C system. J Alloys Compd, 2005, 395(1): 68
|
[23] |
Chen H, Yang Q M, Yang J G, et al. Effects of VC/Cr3C2 on WC grain morphologies and mechanical properties of WC–6 wt.% Co cemented carbides. J Alloys Compd, 2017, 714(15): 245
|
[24] |
Shi K H, Zhou K C, Li Z Y, et al. Microstructure and properties of ultrafine WC–Co–VC cemented carbides with different Co contents. Rare Met, 2022, 41(6): 1955 DOI: 10.1007/s12598-014-0424-y
|
[25] |
Yang Q M, Yang J G, Yang H L, et al. The effects of fine WC contents and temperature on the microstructure and mechanical properties of inhomogeneous WC– (fine WC–Co) cemented carbides. Ceram Int, 2016, 42(16): 18100 DOI: 10.1016/j.ceramint.2016.08.119
|
[26] |
Lee H C, Gurland J. Hardness and deformation of cemented tungsten carbide. Mater Sci Eng, 1978, 33(1): 125 DOI: 10.1016/0025-5416(78)90163-5
|
[27] |
Exner H E, Gurland J. A review of parameters influencing some mechanical properties of tungsten carbide-cobalt alloys. Powder Metall, 1970, 13(25): 13 DOI: 10.1179/pom.1970.13.25.002
|
[28] |
Beijani R, Collin M. Three dimensional topographic studies on worn surfaces of coated cemented carbide tools with different workpiece materials. CIRP J Manuf Sci Technol, 2016, 14: 76 DOI: 10.1016/j.cirpj.2016.05.003
|
[29] |
Llanes L, Torres Y, Anglada M. On the fatigue crack growth behavior of WC–Co cemented carbides: kinetics description, microstructural effects and fatigue sensitivity. Acta Mater, 2002, 50(9): 2381 DOI: 10.1016/S1359-6454(02)00071-X
|
[30] |
Wang W Z, Chen Z G, Feng S S. Effect of CeO2 on impact toughness and corrosion resistance of WC reinforced Al-based coating by laser cladding. Materials, 2019, 12(18): 2901 DOI: 10.3390/ma12182901
|
[31] |
Deng X C, Zhang H, Zhang G H. Effect of CeO2 and VC co-doping on the microstructure and properties of WC–10Co cemented carbide. Int J Refract Met Hard Mater, 2022, 108: 105938 DOI: 10.1016/j.ijrmhm.2022.105938
|
[32] |
Yin C, Ruan J M, Du Y, et al. Effects of Cr3C2, VC, and TaC on microstructure, WC morphology and mechanical properties of ultrafine WC–10 wt.% Co cemented carbides. Metals, 2020, 10(9): 1211
|
[33] |
Cheng C, Li H J, Ye Y W, et al. Effect of Cu and CeO2 additives on structure and performance of WC–10Co cemented carbides. Int J Refract Met Hard Mater, 2023, 117: 106403 DOI: 10.1016/j.ijrmhm.2023.106403
|