AdvancedSearch
LI Yuhua, HE Yuxin, ZHANG Qian, ZHAO Rong, WANG Haojie, CHU Jinghui, NIU Libin. 2D and 3D finite element comparative analysis of compressive properties of porous titanium[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030007
Citation: LI Yuhua, HE Yuxin, ZHANG Qian, ZHAO Rong, WANG Haojie, CHU Jinghui, NIU Libin. 2D and 3D finite element comparative analysis of compressive properties of porous titanium[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030007

2D and 3D finite element comparative analysis of compressive properties of porous titanium

More Information
  • Corresponding author:

    LI Yuhua, E-mail: liyuhua@xust.edu.cn

  • Received Date: May 27, 2024
  • Accepted Date: May 27, 2024
  • Available Online: May 29, 2024
  • In order to investigate the effect of pore structure on the compression properties of porous titanium, the compression process of porous titanium was simulated by finite element method. and the influence of different pore structure parameters such as porosity, pore size and pore shape on the compression performance of porous titanium was studied. Meanwhile, the 2D and 3D finite element simulation results were compared and analyzed. The results show that elastic modulus and yield strength of porous titanium decrease with the increase of porosity, and the pore size has little effect on the compression properties. Among the three kinds of pore shapes, round hole has the best compression performance. For oval hole, the compression performance decreases with the decrease of the size of the hole in the compression direction. The 2D and 3D finite element simulation results are in agreement with Gibson-Ashby model and Nielsen model, and are closer to the experimental results. Both 2D and 3D finite element simulation results can accurately reflect the effect of pore structure on the compression properties of porous titanium, while the calculation time of 2D compression model is shorter.

  • [1]
    杨芳, 李延丽, 申承秀, 等. 钛及钛合金粉末制备与成形工艺研究进展. 粉末冶金技术, 2023, 41(4): 330

    Yang F, Li Y L, Shen C X, et al. Research progress on preparation and forming of titanium and titanium alloy powders. Powder Metall Technol, 2023, 41(4): 330
    [2]
    任垚嘉, 刘世锋, 李香君, 等. 金属纤维多孔材料的制备和研究现状. 中国材料进展, 2019, 38(08): 800

    Ren Y J, Liu S F, Li X J, et al. Preparation and research status of porous metal fiber materials. Mater China, 2019, 38(08): 800
    [3]
    Xia Y, Feng C D, Xiong Y Z, et al. Mechanical properties of porous titanium alloy scaffold fabricated using additive manufacturing technology. Int J Appl Electrom, 2019, 59(3): 1087
    [4]
    武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225

    Wu Q C, Ji Z, Jia C G, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225
    [5]
    周凡, 胡可, 彭小敏, 等. 基于造孔法的多孔钛金属注射成形. 粉末冶金技术, 2023, 41(6): 593

    Zhou F, Hu K, Peng X M, et al. Porous titanium prepared by metal injection molding based on space-holder technique. Powder Metall Technol, 2023, 41(6): 593
    [6]
    狄玉丽, 黄海燕, 焦钰, 等. 医用多孔钛及钛合金的表面改性研究进展. 材料保护, 2022, 55(10): 188

    Di Y L, Huang H Y, Jiao Y, et al. Research progress on surface modification of medical porous titanium and titanium alloys. Mater Prot, 2022, 55(10): 188
    [7]
    Liu L L, Wang S, Liu J C, et al. Architectural design of Ti6Al4V scaffold controls the osteogenic volume and application area of the scaffold. J Mates Res Technol, 2020, 9(6): 15849 DOI: 10.1016/j.jmrt.2020.11.061
    [8]
    贾蓬, 徐雪桐, 黄菲, 等. 多孔材料的孔结构对其力学性能及破裂机制的影响. 东北大学学报(自然科学版), 2021, 42(12): 1768

    Jia P, Xu X T, Huang F, et al. Effect of pore structure on mechanical properties and fracture mechanism of porous materials. J Northeast Univ (Nat Sci), 2021, 42(12): 1768
    [9]
    Anikeev S G, Artyukhova N V, Kaftaranova M I, et al. Structural characteristics and deformation behavior of porous titanium prepared by sintering. Inorg Mater, 2023, 59(2): 123 DOI: 10.1134/S0020168523020012
    [10]
    曾文灿, 陈荐, 任延杰, 等. 选区激光熔化成形不同孔隙结构Ti–15Mo多孔合金的压缩特性. 机械工程材料, 2022, 46(10): 61

    Zeng W C, Chen T, Ren Y J, et al. Compression properties of Ti–15Mo porous alloy with different pore structures formed by selective laser melting. Mater Mech Eng, 2022, 46(10): 61.
    [11]
    Tomoyuki F, Ryo M, Naoto K, et al. Uniform porous and functionally graded porous titanium fabricated via space holder technique with spark plasma sintering for biomedical applications. Adv Powder Technol, 2022, 33(6): 103598 DOI: 10.1016/j.apt.2022.103598
    [12]
    Xiang T, Chen J, Bao W Z, et al. Fabrication of porous TiZrNbTa high-entropy alloys/Ti composite with high strength and low Young’s modulus using a novel MgO space holder. J Mater Sci Technol, 2023, 167: 59 DOI: 10.1016/j.jmst.2023.05.039
    [13]
    Kang J L, Cui Y R, Song J J, et al. Advanced composite material: effect of composite SiC on compressive strength and hardness of porous titanium. J Mater Res Technol, 2022, 16: 960 DOI: 10.1016/j.jmrt.2021.12.037
    [14]
    Li Y H, Zhang Q, He Y X, et al. Sliding and fretting wear behavior of biomedical ultrafine-grained TiNbZrFe/Si alloys in simulated physiological solution. Materials, 2024, 17(4): 787 DOI: 10.3390/ma17040787
    [15]
    Epasto G, Palombag G, D’andread D, et al. Ti–6Al–4V ELI micro lattice structures manufactured by electron beam melting: Effect of unit cell dimensions and morphology on mechanical behavior. Mater Sci Eng A, 2019, 753: 31 DOI: 10.1016/j.msea.2019.03.014
    [16]
    Annur D, Kartika I, Sudiro T, et al. Microstructure, mechanical properties, and invitro studies of porous titanium obtained by spark plasma sintering. T Indian I Metals, 2022, 75(12): 3067 DOI: 10.1007/s12666-022-02680-9
    [17]
    Liu B W, Xu W, Cheng M Y, et al. Structural design and finite element simulation analysis of grade 3 graded porous Titanium implant. Int J Mol Sci, 2022, 23(17): 10090 DOI: 10.3390/ijms231710090
    [18]
    Khodaei M, Meratian M, Savabi O, et al. The effect of pore structure on the mechanical properties of titanium scaffolds. Mater Lett, 2016, 171: 308 DOI: 10.1016/j.matlet.2016.02.101
    [19]
    Li H, Yao B B, Li Z H, et al. Compressive properties and deformation mechanism of selective laser melting of Ti6Al4V porous femoral implants based on topological optimization. Compos Struct, 2023, 321: 117326 DOI: 10.1016/j.compstruct.2023.117326
    [20]
    Nikiforov G A, Galimzyanov B N, Mokshin A V. Dependence of the mechanical properties of porous titanium nickelide on the pore morphology under compression. High Energ chem, 2023, 52(1): S137
    [21]
    Yu G S, Li Z B, Li S J, et al. The select of internal architecture for porous Ti alloy scaffold: A compromise between mechanical properties and permeability. Mater Design, 2020, 192: 108754 DOI: 10.1016/j.matdes.2020.108754
    [22]
    李素丽, 赵京生, 杨来侠. 个性化无规则多孔钛腰椎融合器的结构分析. 机械科学与技术, http://doi.org/10.13433/j.cnki.1003-8728.20230155

    Li S L, Zhao J S, Yang L X. Numerical simulation analysis of mechanical properties of irregular porous titanium lumbar fusion apparatus. Mech Sci Technol Aerosp Eng, http://doi.org/10.13433/j.cnki.1003-8728.20230155
    [23]
    Li H, Yao B B, Li Z H, et al. Compressive properties and deformation mechanism of selective laser melting of Ti6Al4V porous femoral implants based on topological optimization. Compos Struct, 2023, 321: 117326 DOI: 10.1016/j.compstruct.2023.117326
    [24]
    Muñoz S, Castillo S M, Torres Y. Different models for simulation of mechanical behavior of porous materials. J Mech Behav Biomed, 2018, 80: 88 DOI: 10.1016/j.jmbbm.2018.01.026
    [25]
    Liu Y J, Li S J, Zhang L C, et al. Early plastic deformation behaviour and energy absorption in porous β-type biomedical titanium produced by selective laser melting. Scripta Mater, 2018, 153: 99 DOI: 10.1016/j.scriptamat.2018.05.010
    [26]
    牛文娟. 多孔钛及其合金的制备及性能研究[学位论文]. 重庆: 重庆大学, 2011

    Niu W J. Research on Preparation and Properties of Porous Titanium and its Alloys [Dissertation]. Chongqing: Chongqing University, 2011
    [27]
    张永弟, 王琮瑜, 王琮玮, 等. 增材制造医用多孔钛合金研究与应用现状. 河北科技大学学报, 2021, 42(6): 601 DOI: 10.7535/hbkd.2021yx06007

    Zhang Y D, Wang Z Y, Wang Z W, et al. Research and application status of medical porous titanium alloy formed by additive manufacturing. J Hebei Univ sci Technol, 2021, 42(6): 601 DOI: 10.7535/hbkd.2021yx06007
    [28]
    廖益龙. 多孔钛及合金制备与抗压缩性能的基础研究[学位论文]. 重庆: 重庆大学, 2015

    Liao Y L. Study on Preparation and Compression Property of Porous Titanium and Its Alloy [Dissertation]. Chongqing: Chongqing University, 2015
    [29]
    李伯琼. 多孔钛的微观结构与性能研究[学位论文]. 大连: 大连交通大学, 2011

    Li B Q. Study on the Microstructure and Properties of Porous Ti [Dissertation]. Dalian: Dalian Jiaotong University, 2011
    [30]
    Hasebe T, Kobayashi E, Tezuka H, et al. Effect of sintering conditions on mechanical properties of biomedical porous Ti produced by spark plasma sintering. Jpn J Appl Phys, 2013, 52(1): 01AE03
    [31]
    Khodaei M, Fathi M, Meratian M, et al. The effect of porosity on the mechanical properties of porous titanium scaffolds: comparative study on experimental and analytical values. Mater Res Express, 2018, 5(5): 055401 DOI: 10.1088/2053-1591/aabfa2
    [32]
    Jha N, Mondal D P, Majumdar J D, et al. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route. Mater Design, 2013, 47: 810 DOI: 10.1016/j.matdes.2013.01.005
    [33]
    Wang X H, Li J S, Hu R, et al. Mechanical properties and pore structure deformation behaviour of biomedical porous titanium. T Nonferr Metal Soc, 2015, 25(5): 1543 DOI: 10.1016/S1003-6326(15)63756-6
    [34]
    沈明, 魏大盛. 孔隙形状及孔隙率对多孔材料弹性性能的影响. 复合材料学报, 2014, 31(5): 1277

    Sen M, Wei D S. Influence of poregeometry and porosity on elastic properties of porous materials. Acta Mater Compos Sin, 2014, 31(5): 1277
    [35]
    Liu Y J, Wang H L, Li S J, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater, 2017, 126: 58 DOI: 10.1016/j.actamat.2016.12.052
    [36]
    Esen Z, Bor S. Processing of titanium foams using magnesium spacer particles. Scripta Mater, 2007, 56(5): 341 DOI: 10.1016/j.scriptamat.2006.11.010

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return